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My purpose in the present survey is m trace the development of the 
basic concepts of quasi.brittle fracture crack theory and to outline the 
present state of the art. Selecting the most relevant material from the 
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massive literature dealing with various theoretical and experimental 
aspects of fracture theory and in some way concerned with the propa- 
gation of macroscopic cracks proved a very difficult task. This pre- 
vented me from giving adequate coverage to experimental studies, 
dynamics problems, the beam approximation, and several other aspects 
of theory and applications. I am well aware of the fact that the survey 
contains gaps and that some studies have either been overlooked com- 
pletely or not discussed with adequate thoroughness. This applies in 
large measure to the numerous reports and theses from various foreign 
universities and laboratories which were not available to me. Where 
possible, I have tried to convey the original interpretations'placed by 
authors on their own results. Notation has been altered as required for 
the sake of consistency. 

Preparation of the survey was suggested to me by A. Yu. Ishlinskii. 
I am grateful to Yu. N. Rabomov and L. I. Sedov for their many vain- 
able comments and to G. P. Cherepanov for useful discussions of the 
subject matter. N. A. MQrozova, Chief Librarian of the Institute of 
Mechanics Problems AS USSR, and E. O. Vil'dt, Chief Librarian of the 
Mechanics Section AS USSR, were very helpful in my work on the lit- 
erature. G. I. Bykovtsev, S. A. Vil'man, V. V. Dudukalenko, V. A. 
Zhalnin, Yu, P. Listrova and T. D. Semykina all assisted greatly in 
my task. I should like to express my sincere thanks to all of the above. 

I. DEVELOPMENT OF THE BASIC CONCEPTS 

w Mathematical foundations of the theory. The theory of quasi- 
brittle fracture is based on the elasticity theory for small strains. The 
most interesting results relevant to our subject are certain solutions of 
elasticity theory for a plane weakened by a straight-line crack or 
cracks; the analysis of the stress and strain states near a crack tip was 
also an essential part of the preliminary worK. 

In 1909 G. V. Kolosov [1] obtained the solution for a plane weak- 
ened by an elliptical hole under uniform tension. The solution of the 
problem of a plane with a straight-line crack is a special case of 
Kolosov's solution. In 1913 the same solution was obtained by Inglis 

i t ] .  
N. I. Muskhelishvili [ I ]  (19i9) solved the problem of a plane with 

an elliptical hole in an arbitrary stress field. 
In subsequent studies Kolosov, Muskhelishvili, and their followers 

developed the mathematical apparatus of elasticity theory which per- 
mitted solution of the baste two-dimensional problems of elasticity 
theory. The resulting solutions played a major role in the development 
of the theory of quasi-brittle fracture. 

In 1939 Westetgaard [2] published his paper on the theory of contact 
problems and oraeks in elastic bodies, which became widely known in 
the West. Westergaard introduced the function of a complex variable 

Z = Z (z) ----- Z (x q- iy) = ReZ q- ilm Z. (1.1) 

He defined the functions Z', Z, Z, as the derivative and the first 
and second integrals of Z, 

z" dZ Z =  45 -g= d~ 
= a T '  o--/'  - ~ z  (1.2) 

The stresses in certain important groups of problems can be written 
in the form* 

o x= R e Z - - y l m g ' ,  % = R e Z + y l m Z ' ,  

~x~ = - - / / R e  Z'. (1.3) 

Relations (1.3) satisfy the equilibrium equations of the planar prob- 
lem. The solutions obtained from Eqs. (1.3) satisfy the condition 

~ x = % ,  ~xy=0  for y = 0 .  (1.4) 

The first condition of (1.4) is valid over continuous domains. 
The displacement u, v along the x- and y-axis are given by 

2Gu = (1--2 ~) BeE --  y Im Z, 

2Gv = 2 (t - -  v) Im Z - -  V Re Z (1.5) 

where G is the shear modulus. 
The displacement v along the y-axis for y = 0 can be expressed in 

the form 

Vo= l - ~ v  ImZ.  (1.6) 
~ r  

Taking any function of a complex variable 7.(z), we can use Eqs. 
(1.3) and (1.5) to obtain some solution for the problem of the plane 
theory of elasticity. This is the basic idea of the semi-inverse method 
of Wnstergaard. 

Choosing appropriate functions Z, Westergaard investigated severn 
contact and crack problems. 

He proposed functions Z for the case of one internal crack and for 
several collinear cracks in a plane under uniform tension at infinity 

z = p / V i  - ~ / ~ ,  = P ~ l / 1  - -  sins (ha~l). (1.7)  z 
g sin s (~xz/l) 

Westergaard noted that in order to consider the uniform pressure p 
applied along the banks of a crack as the load it is necessary to take 
functions (1.7) in the form 7- 4 = Z - p. He also considered problems 
concerning a crack opened by a wedge applying the force P as shown 

*The Westergaard formulas are a special case of the Kolosov-Mu- 
skhelishvili formulas for ~(z) = Z/2 ,  ~'(z)= zZ/2. Severalofthe 
problems investigated by Westergaard had already been considered 
by Muskhelishvili in the second edition of his monograph Some Basic 
Problems of the Mathematical Theory of Elasticity (1985). Wester- 
gaard's results are presented here because they were used in this form 
by Irwin and other developers of the theory of quasi-brittle fracture. 
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in Fig. 1. The functions considered by Westergaard in this case were 

d -  Z = P Z = P z (1.8) "~ (a + z--'--~ ' ~ (~ + ~) ~ 

Figures lb and l c  show the corresponding stress curves for y = O. 

Westergaard suggested that the shape of the second curve (Fig. l c )  
with finite stresses at the tip of the crack be regarded as typical of 
brittle materials such as concrete.  Finally, the function 

Z = Pa l~z  l f z ~ a  ~ (1.9) 

defines the stress-strain state of a plane with a central crack opened 
by concentrated forces P (Fig. 2). 

Sneddon [1, 2], Sneddon and Elliot [1], et al .  further extended the 
mathemat ica l  methods of the theory of cracks in elastic media.  

Sneddon [1] (1946) considered the plane and axisymmetric prob- 
lems of isolated cracks in infinite bodies. For the planar problem he 
used Westergaard's solution [2] and analyzed the stress state near a 
crack of length 2a acted on by a constant internal pressure p0. He 

chose Z as 

Z = p o  "[/z~--a~ - - t  . (1.10) 

Among other things, Sneddon determined the stress distribution near 

the edge of the crack. 
Let us review Sneddon's analysis briefly. We begin by setting 

z -~- re ~r z - -  a = r~e TM, z + a = r~e 14~ (I .11) 

as indicated in Fig. 3. 
From Eqs. (1.3), (1.10), and (1.11) we obtain 

11~. (ax @ %)  = Po [r (r~r~.) -'l'~ cos (* --  1/2 ~1 - -  1/~ ,~) __ 1], 

I/~ - (% - -  ~x) = Po a~'r (r lr'-) -% sin ~ sin s/2 (~t -ff tp2) 

"~xy ~ Po a~r (r~ro_)-% sin ~ cos ~/~ (~l ~ ~ )  (x.12) 

To determine the stress distribution near the r ight-haM tip of the 
crack, we set r 1 ='fi, where 5 is a small parameter.  Next, we set ~ = 
= 0. To within higher-order terms we have 

r = a + 6 c o s O ,  r ~ = 2 a + 6 c o s O ,  

0 = 5 sin (O/a), 02 = r/2 6 sin (O/2a) (1.13) 

Linearizing (1.12), (1.13) and carrying out some transformations, 
we obtain 

qx = Po (a126) % (~I#, cos 012 + 1/4 COS 50t2), 

cry ~ Po (a/25) % (5/~ cos 0/2 - -  1/4 cos 50/2) 

"~xu = Po (a/86) % sin 0 cos 30/2. (1.14) 

[Barenblatt [1] (1956) investigated asymptotic expressions for the 
stresses and displacements near the crack tips for the problem shown 
in Fig. 2 with compressive forces - q ~  acting at infinity. He derived 
expressions for the stresses along the x-axis (0 = 0 in formulas (1.14)) 
for the displacement v along the y-axis for small  O.] 

In the same paper Sneddon used Fourier transformation to investi- 
gate the case of a circular crack under var iable  axisymmetric pres- 
sure. It turned out that near the edge of a circular crack acted on by 
a constant pressure P0, we have (in analogous symbols) 

zr = (21~) z~r % = (2/~) %, ~r~ = (21n) ~ 

\ z 6 )  2 
(1.15) 

where (Jr' ~ Trz' and or are the stress components in the cylindrical 

coordinate syster r, q~, z.  The components o x, Oy andrxy are given by 
formulas C[ .14), 

We must also take note of Sneddon's analysis of the elastic energy 
of a cracked body. 

Fig. 2 

In 1946 Sneddon and Elliot [1] discussed the stress distribution near 
a plane Grifffth crack under a pressure, variable along the length of 
the crack, applied to its banks. They availed themselves of the Fou- 
r i e r  cosine transform and the results of dual integral equation theory. 
Their results were entirely analogous to those of Sneddon [1] for the 
axisymmetric problem. 

Sneddon later cited similar results for the plane and the axisym- 
metric problems of elasticity theory in his monographs [2, 3]. 

Williams [1, 2] (1952) considered the general solution of elasticity 
theory near the vertex of an infinite sector of the angle ~ (Fig. 4a). 
He later investigated the special case of his solution when c~ = 2,~ and 
both banks of the crack are stress-free (Fig. 4b) [3] (1957). 

Using the polar coordinate system r, O, Williams shows (see the 
corrected variant of his formulas in [.5]) that the biharmonic stress 
function x(r, O) can be resolved into its even and odd parts with respect 
to the y-axis,  Xe(r,O) and Xo(r ,O) ,  respectively, i . e . ,  

= ( - -  t)~-~a~n_tr n+':2 ~- O zAr, O) ~j  { . i - - c o s ( n - - V 2 )  + 
~=i. 2,3 

(o + +)0] + 

+ ( - - l ) n a o . n r a + l [ - - c o s ( n - - ' l ) O + e o s ( n d - t ) O ] } ,  (1.16) 

X0 (~, *) = ~ ~(_ l),~-t ~ %._1 r n§ . f  

+ [sin (n -- s/~) 0 -- sin (n + V~) 0] + 

- ] - ( - - t ) n b ~ . . n r n ~ l l - - s i n ( n - - i ) O - ] -  ~ - - l - s i n ( n +  f)0}.  (1.17) 

Functions (1.16) and (1.17) define the stress field satisfying the 
equilibrium and boundary conditions at the free banks of the crack. 
The constants a i and b i must be determined from the boundary con- 
ditions at infinity in the case of an infinite sector, and from those 
at the fixed boundaries in th~ case of a body of finite size. 

Expressions (1.16) and (1.17) imply that the stresses near the edge 
of the crack can be written as 

i 1 -5  2 

} ~ , + b l [ - - 5 s i n O / 2 + 3 s i n 3 0 / 2 ]  + 4 a 2 c o s .  O + O ( r / 2 ) ,  (1.18) 

t {a~[-- 3 cos + - -  cos-.~-] + 

. 0_.@] 
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It is clear that in Cartesian coordinates the terms containing the 
coefficient italic az in (1.18)-(1.20) correspond to the purely tensile 
state 

z x = 4a.o, % = 0, "Cxy = 0. (1.21) 

Since most cases do not involve pure tension along the crack edge, 
Williams assumes at this point that az = O. 

Thus, the variation of the stress components over the radius is 

generally of the order of r -Vz + 0(rl/Z). 

~ Z 

q 

-a O a 

Fig. 3 

Williams now proceeds to determine the total potential energy den- 

sity W, obtaining 

3 2 E r W  = a~[(34-- 30 v) cos~ 0 - E - +  

2 ( l + v )  sin ~" + + 2 ( t + - )  + 

- o + 20] + ( 3 0 -  sin' o 
- 7 - +  

+ , 2  (l  + v) cos ~ + + iS (1 + ~) + i2 (I + v) cos 20] + 

+ [(32 - 22 ,)  O o2 

- -  8 (1 + v) sin 20q + . . . .  (1.22) 
.1 

His expressions for the strain energy of distortion density W d is 

0 2 r d= (, +3 sio.O)oos, + 

+ 2b~~ [3 + (t + 3cos + )  (t --  3 c o s + )  s i n ~ O l  + 

+ 2aib~ sin 0 + . . . .  (1.23) 

He then obtains the following expressions for the displacement 
components: 

2 G u r = r V ~ { a t i ( _ _  5 ' 

7 �9 0 1 �9 

0 +ioos 07 +2 . ,  

where u r and u 0 are the displacement components in the polar coordi- 

nate system, and 7 = V / ( l +  u). 
Next, Williams carries out separate investigations of the symmetric 

(bi = 0) and antisymmetric (a i = 0) stress distributions with respect to 
the y-axis. 

In the symmetric case the character of the singularity near the tip 
of the crack is the same as that of the singularity defined by Inglis, 
Westergaard, et al. Williams notes that since rr0 = 0 for 0 = 0 and 
o r --,- o 0 = - a v - 1 / z '  t he  tip of a planar crack tends strongly to a state 

of uniform two-dimensional (hydrostatic) pressure which makes it 
possible to use elasticity analysis near the crack tip despite the pro- 
portionality of the stress components to r "l/z. He then determines the 
difference between the principal stresses near the crack tip and shows 
that the tendency towards hydrostatic tension diminishes with the dis- 
tance from the crack tip. 

Williams also determined the variations of the principal stresses 
along a circle with a small radius r = r 0 and whose center lies at the 
crack tip (Fig. 5a). The maximum tensile stress is attained at 0 = 
= ilr/3.  The maximum shearing stress corresponds to O = ~r/2 and is 
equal m one-half of the hydrostatic tension acting at 0 = 0 in the same 
radial direction. Figure 6 shows the magnitudes and orientations of 
the principal stresses for the characteristic directions, o0 = --aIr01/z. 
The maximum strain energy of distortion lies not on the line of the 
crack, but rather in the direction 0 = :l:cos'i (1/3) ~ :t:70 ~ where it is 
larger by one-third (see Fig. 7a). 

Williams notes that for ai = 0 we arrive at the problems considered 
by Westergaard [1, 2] in which the stress concentration at the crack 
tip is negligible. 

Williams carried out a similar analysis in the antisymmetric case. 
The stress singularity was once again of the order of r -t/2. The vari- 
ation of the principal stresses is shown in Fig. fib; the variation of the 
strain energy of distortion density appears in Fig. 7b. 

The results of the above studies imply that the lasymptotic behavior 
of the stresses and strains near the crack tip does not depend on the 
form of the stress state. The characteristic dimensions of the crack 
and of the body, the  loads, and the other parameters constituting the 
initial conditions determine ordy the coefficients al and bl in (L18)- 
(1.20) characterizing the stress intensity and the strains near the crack 
tip. 

w The principles of the Griffith-Irwin theory. The Originator o f  

the mathematical theory of crack propagation in elastic media and of 
quasi-brittle fracture theory was Griffith ['1, 2]. In studying the fracture 
of glass Griffith assumed that it contained crack-like defects. Ac- 
cording to him, the largest of these cracks becomes self-propagating 
when the rate of propagation of the strain energy exceeds the rate of 
increase of the surface energy of the crack during extension. 

Griffith's argument can be stated in the following form. Let us 
consider an ideally elastic body (a discontinuity surface or a cut of 
zero thickness) of area S. We assume that the body is strained by some 
system of external body forces F i and surface forces Pi. We assume, 
moreover, that the outer boundary of the body is fixed and that the 
displacement discontinuity surface increases by 6S. The increment 
6S corresponds to the rupture of internal bonds in the elastic body. 
The work done by the external forces in the case of fixed boundaries 
is equal to zero, and the elastic energy of the body decreases by the 
amount 6W. The quantity 6W/6S has come to be called the rate of 
liberation of elastic energy during crack propagation. 

At the same time, the increases in crack surface increase the crack 
surface energy by 6~r; similarly, 6~r/6S is the rate of increase of the 
surface energy of the body during propagation of the crack. According 
to Griffirh, the energy criterion for the equilibrium state of the crack 
can be written as 

6 ( w -  n)=o. (1.26) 
6s 

The crack is stable when 

and unstable when 

8~ (w --  17) > 0. 
6S'- 

(1.27) 

6~  n) < 0 .  
6s~ 

(1.28) 

Griffith assumed that 

6II = 2T6S,  T = const (1.29) 

where T is the surface tension. 
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We can therefore write condition (1.26) in the form 

6~Z = aT. 
6S 

(1.30) 

For example, Griffith considered a surface with a straight-line cut 
of length 2l under the uniform omnilateral tension p at infinity. Using 
the Inglis solution [1], Griffith obtained the critical values of Po for 
the planar strain and planar stress states 

V 2ET / 2ET (1.31) 
po= g ( l _ v ~ . ) / ,  Po=  gl 

where E is the elastic modulus and v is the Poisson coefficient. 
The solution of the problem of elasticity theory concerning a 

straight-line crack in a plane under tension has the following pecu- 
liarity: for any arbitrarily small but!finite load P0 the contour of the 
straight-line crack is deformed into an elliptical cavity, and the 
stresses at the crack tips turn out to be arbitrarily large. Such singul- 
arities are generally involved in the solutions of the equations of linear 
elasticity theory in cases when the geometric or force boundary con- 
ditions have singularities. This is exemplified by the solutions of 
linear elasticity theory concerning the impression of dies with comers, 
the action of concentrated forces, the presence of notches in the 
boundary of a body, etc. tn the case of the Kolosov-Inglis problem 
such a singularity occurs at the tips of the crack, where the radius 
of curvature is zero and the curvature is infinite. 

We know that such singularities of the solution have no analogs in 
the physical behavior of real media, but that they correctly describe 
the character of the stress and strain states of a body in a sufficiently 
small neighborhood. 

Griffith also considered a crack in the form of an elliptical cavity 
with a small finite radius of curvature. However, his attempt to avoid 
infinitely large stresses near the crack tips and to relate the notions 
of continuum mechanics to those of solid state physics were unsuccessful. 
According to his estimates, the radius of curvature at the crack tip 
would have to be a quantity on the order of interatomic distances, 
whereas the continuum mechanics deals with distances of much higher 
order of magnitude. 

However, it turned out to be unnecessary to relate the notions of 
continuum mechanics to the molecular and atomic notions of solid- 
state physics in this case. 

Further investigation showed that modifications of Griffith's concepts 
could be used to describe a sufficiently broad class of solid-body frac- 
tures within the framework of phenomenological theory. 

Griffith checked his results experimentally. 
After the appearance of Griffith's first paper, Smekal [1] published 

an analysis of the problem of quasi-brittle fracture. Specifically, he 
corrected certain inaccuracies present in Griffith's solution (for refer- 
ences to other papers by Smekal see Weiss and Yukawa [1]). 

Wolf [1] reviewed Griffith's ideas and solved the problem of crack 
propagation for a straight-line slit tn three cases: omnilateral uniform 
tension at infinity (see Fig. 83; this was the case considered by Grif- 
fith), uniaxial uniform tension at infinity (Fig. 8b), and pure bending 
(Fig. 8c). 

In an addendum to his paper Wolf discussed the problem of fracture 
of a body containing many differently oriented small cracks of length 
2l. Assuming that the stress state was the combination of the three 
stress states which he had considered, he formulated the following 
condition of cracking of the body: 

4vo 2 + (t - 3v)(r -- nx) % = 4TE/nl (1.32) 

where ol, o2 are the principal stresses at sufficient distances from the 
crack. 

Wolf suggested that the quantity 4TE/~rl be regarded as a material 
constant. His results are discussed in a recent paper by Swedtow [1]. 
An attempt to construct a theory of strength on the basis of material 
fissility was also made by Mossakovskii and Rybka [1]. 

Certain important results which had a considerable effect on the 
theory of quasi-brlttle fracture were obtained by Neuber [1], 

Neuber did not concern himself with cracking theory as such, but 
rather with stress concentrations near various recesses for several 
planar and axisymmetrio problems, as well as for torsion problems of 

elasticity theory. 

Fig, 4 

Making use of the semi-inverse methods of elasticity theory, Neuber 
based his investigations on the general solution in the appropriate co- 
ordinate system.* Despite the well-known cumbersomeness of his method, 
Neuber succeeded in obtaining a series of effective sohitions of impor- 
tant problems. 

Solutions for bodies weakened by various types of slits and notches 
follow as limiting cases from the Neuber solutions, 

For deep smooth grooves (Fig. 93) the maximum stress occurs at 
the vertex of the groove, and the concentration coefficient c~ can be 
written as 

= I (a/p) (1.33) 

where a is one-half of the width of the narrowest transverse cross section 
and p is the minimum radius of curvature of the groove. 

In the theory of grooves with sharp corners, Neuber encountered the 
singularities of the solutions of elasticity theory which occur in the 
mathematical theory of cracks. With a sufficiently small radius of 
curvature the formally computed stress concentration coefficient as- 
sumes arbitrarily large values devoid of practical meaning. This led 
Neuber to suggest the introduction of a certain particle having other 
than etasdc properties in a sufficiently small neighborhood of the 
groove. The size of this parrXcle assumes the role of a new material 
constant. Once this constant has been determined experinaentally, the 
practically possible error of determining the concentration coefficient 
in the remainder of the zone is quite acceptable, 

Let us consider Fig. 9b. Near the end of the notch we have a 
"Neuber particle" of width e. Let us assume that the sohition of the 
classical theory of elasticity has been found. We assume that the par- 
t ide  is so small that the stresses acting on its surface can be considered 
constant. The new values of the stresses in the particle are obtained 
by averaging the old values at its surface. The concentration coef- 
ficient then becomes 

= ] (2a/e). (1.34) 

Thus, according to (t.33) and (1.34), the role of the radius of cur- 
vature in the case of a sharp-cornered groove is played by the quantity 
s /2 .  Setting p' = s /2,  Neuber noted that the constant p' is related to 
the structure of the material I assuming different values for different 
materiaIs. For example, the p' for steel is approximately 0.5 mm. 

According to Neuber there is another way of explaining the decrease 
in the stress concentration coefficieht: instead of considering the stress 
state relative to the unstrained state in accordance with linear elas- 
ticity theory, one can use the theory of finite strains to refer the 
equilibrium equations to the strained state.** But since allowance for 
the effect oflstraining and introduction of an appropriate "particle" to 
allow for the structure of the material has the effect of decreasing the 
stress concentration in a highly curved groove, we can use one of the 
above approaches, e .g.  that of Neuber, provided we choose our con- 
stant O' in accordance with experimental darn. Thus, the introduction 
of p' is in a sense ,equivalent to allow finite strains near the end of a 
sharp-cornered groove. 

*An analogous solution was obtained before Neuber by Grodskii and 
Papkovich in their Theory of Elasticity, Oborongiz, pp. 120-131, 
1989. 

**This was, in fact, the approach used by FOppl (Ing. Arch., Vol. 7, 
p. 229, 1986). 
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Neuber showed that the linear theory of elasticity yields acceptable 
results in the immediate ineighborhood of the vertex of a sharp-cornered 
groove. 

O -ZO I-'I 
~0 ~0 ~0 ~0 ~ 

Fig. 5 

Irwin [1] (1948) and Otowan ['1] (1950) both expressed the view that 
the Griffith theory can be used to describe the cracking of a whole 
range of materials:* It turin out that certain metals which exhibit 
comiderable'!plastic properties experience brittle fracture if they con- 
tain cracks. 

This is due to the fact that the stress state near the tips of cracks 
or notches is close to uniform triaxial tension. Brittle fracture in or- 
dinary malleable metals is always accompanied by small plastic strains 
in a thin layer at the fracture surface. The elastic energy of the body 
during the fracture of such materials is converted not!only into surface 
energy, but also into the work expended on the formation of plastic 
strains in the surface layer of the crack. According to Orowan's estimates, 
for example, the latter quantity in the case of iron is lO s times larger 
than the surface tension energy, which means that the latter can be 
neglected. In the case of high-carbon steel the two quantities are 
comparable. 

Let us rewrite relation (1.30) as 

6W 
8S = ~ '  (1.35) 

According to the Castigliano theorem of elasticity theory, the force 
is equal to the partial derivative of the energy with respect m the cor- 
responding displacement, so that relation (1.35) can be considered 
from this standpoint. In this case the quantity 5ecan be interpreted as 
the force per unit area (or length) of the crack edge which acts m 
propagate the crack. 

According to Irwin and Orovan, there exists a certain limiting value 
~c,  which is a constant of the material. Its attainment coincides with 
the onset of crack propagation. 

The crack propagation criterion therefore becomes 

>/.~'c, (1.36) 

Cracks are stable if 

< Sr 0.37) 

Experimental determination of ~c  is discussed in numerous papers, 
e.g., Irwin [i], Orlov B,2], Irwin and Kies B,2], Irwin, Kies, and 
Smith [i], et al. (A more detailed bibliography will be found in the 
collection Fracture Toughness Testing and Its Applications, Philadelphia, 
1965.) 

Irwin's paper [3] was a landmark in the development of the mathe- 
matical theory of cracks. Its findings are developed in his subsequent 
publications. 

In [3] Irwin used the semi-inverse method of  Westergaard together 
with functions (1.7) to obtain three new solutions. The first of these 
applies to a crack of length 2a lying along the x-axis and acted on 
by the cleaving (opening) forces P applied at the points x = b (Fig. 10"). 
The corresponding Westergaard function is of the form 

Pa F ~ - @ / a ) ~ ] ' / ~  
Z = ~(z - -  a) z k ~ J  " (1.38) 

*Irwin [1] noted that the relationship between Griffith's ideas and the 
quasi-brittle fracture of metals was first considered by Zener and 
Hollomon, Trans. A m .  Soc. Metals, Vol. 33, pp. 163-235, 1944. 

The second example preserves all the conditions of the latter ease 
and differs by the addition of the cleaving forces P at the points x = 
= -b l  the Westergaard function is 

_ ~ F ~ - r  ' / '  z - ~ (~., _ ~..) Lt -- @ I zp.I " (1.89) 

The third example concerns a periodic system of cracks of length 
2a whose centers are a distance l apart, and where the cleaving forces 
P are applied at the crack centers. The Westergaard function is of the 
form 

P sin (an / l) r sin ~ (z~a I l ) ] -% 
Z --  l sin' (nz / l) L t - -  ~ J  " (1`40) 

In the same paper Irwin discussed the applicability of solution 
(1.40) to a plate of finite length l. 

Like Sneddon [1], Irwin used the substitution of variables 

z = a "Jr- rei~ ra = (x  - -  a) 2 -F Y~, tgO = y / ( z  - -  a) (1,41) 

in all five examples. 

Confining himself to a small neighborhood at the crack tip and 

assuming that the quantities r/a and r/(a - b) are negligible compared 
with unity, Irwin (see Sneddon [I]) obtained 

, E ~ ' I ,  c o s O / 2  / . 0 . 30~ 
= l t - T s ,n  - r /  . . . .  ( 1 . 4 2 )  

where ~ is a quantity which depends on the load (he had not yet 
established the relationship between the ~ in  (1.42) and (1.35). 

Irwin's expansions (1.42) differ from Sneddon's expansions (1.14) 
and from the first term of Williams' expansion (1.18)-(1.20) in notation 
only and describe the same stress state near the crack tip. 

Irwin defined the quantity (E~/Tr) l/s as the stress intensity coefficient. 
He then introduced the following symbol for the stress intensity coef- 
ficient in the case of transverse-rupture cracks: 

g r  = (g ,~ la )  '1'. (1.43) 

Next, he derived a formula which enabled him to establish the 
identity of the quantities~appearing in (1.42) and (1.35) and thus m 
formulate a force approach in crack theory equivalent to the energy 
approach of Griffith. His reasoning was as follows. 

Let the origin be shifted to the right-hand tip of the crack as shown 
in Fig. 11. We assume that the crack has propagated to the value x = 
= c~. We also assume that a is much smaller than;the length of the 
crack. If the forces acting along the x-axis are defined as 

S u (q) = q ~ ,  0 ~ x ..< ~ (1.44) 

where q is a parameter, and if they are applied to the crack edges, 
then the crack closes over the segment 0 -< x -< ~ as the parameter q 
varies from zero to unity~ 

The closing segment of the crack can (in the same approximation) 
be written as 

,~ . 2 I E . ~  'h 

Hence, the work required to close a crack over the above segment 
is given by 

6~ 

:~ do dx  = a Y .  (1.46) 

The amount of work defined by (1.46) is equal to the change 5W in 
the elastic energy of the body. The role of the crack length variation 
6Lis played by the quantity c~. This implies that expression (1.46) is 
fully equivalent to (1.85) for the opening of cracks in the planar case. 

Irwin noted that the above analysis was based on the relations of 
the linear theory of elasticity, while crack zones experience such 



J O U R N A L  O F  A P P L I E D  M E C H A N I C S  A N D  T E C H N I C A L  P H Y S I C S  65 

effects as local stress relaxation and distortion of the opening crack 
through plastic flow. It should not be assumed, however, that these 
effects can result in a marked difference between the true rate of 
strain energy loss and its computed value. The method which yields 
relation (1.46) is equivalent to computing the derivative of the total 
strain energy with respect m crack length. The contribution of the 
tip zone to the overall energy balance is relatively small. 

Citing experimental findings, irwin wrote that if the plastic strains 
near a crack affect the stress field only at distances from the crack 
which are smaller than its length, then the effect of these plastic 

istzains o n . i s  correspondingly slight. 
Irwin then discussed the problems involved in experimental deter- 

mination of~  c. 
In his later paper [4] Irwin again formulated the basic principles of 

the theory. He computed the strain energy density '~ in a region of 
radius rl around the edge of a circular crack, obtaining 

Pt 

where a is the crack radius. 

For a central crack in a sufficiently large plate under homogeneous 
tension the quantity~is propOrtional to a at sufficient distances away 
from the crack, so that 

05f r~ 
rl Oa --  a (1.48) 

For central cracks opened by cleaving forces applied at the crack 
center the quantirySfis inversely proportional to a, so that 

0~ rz 
rz ~ = ----7- 5~. (1.49) 

According to Irwin, the integral (1.47) is of the same order of mag- 
nitude as the error involved in determining ~due to neglect of plastic 
strains if the zone bounded by the radios r I includes the major portion 
of the plastic straining zone. When .~fconsidered as a function of crack 
extension passes through an extremum, integral (1.47) becomes zero. 
By hypothesis, the plastic strains are localized in a surface layer 
whose thickness is small as compared with the length of the crack. 
The reduction of stresses by plastic flow near the crack surfaces can 
therefore be estimated by way of the change of~charaeterized by the 
derivative 0 ~/Oa, but this reduction is relatively small. Irwin also 
cited experimental data for the material constant ,~r obtained for 
central cracks opened in plates in planar stress states. He noted that 
the significance of '~c in quasi-brittle fracture theory is the same as 
that of the yield srxess in plasticity theory. 

In the following year there appeared a discussion of Lrwin's paper 
[a]. 

McClintock noted that even if the applied stress is very large, the 
radius of the plastic zone is still small as compared with crack length. 
He obtained some appropriate estimates and then noted that the plastic 
zone consists of twolregions: the first of these is due to the overall 
yield of the macroscopic,domains adjacent to the notch; the second is 
due to the brittle fracture necessary for branching of the cracks at the 

nearby grains. The radius of the latter region is roughly equal to the 
size of a single grain. 

WilLiams proposed an additional interpretation of the quantity~ e, 
pointing out its relationship with the radius of curvature at the tip of 
the crack. The first term of the expansion of the displacement normal 

to the crackat  its tip is of the form 

v (~, 0) = - ~ -  \ - K - ]  ( 2~)'/' (LSO) 

with the origin placed at the tip, 

The local radius of curvature p at the base of the crack is related 
to the quantity ~ by the expression 

rtE 
.~ = -~- p. (1.51) 

Williams also noted the relationship between the Irwin and Neuber 
theories. 

g00 ..?0o 

," I / / I  ", 

Fig. 6. The maximum tensile stress corresponds 
to 60~ the maximum octahedral stress to 70 ~ 

and the maximam shearing stress to 90 ~ 

tn concluding the discussion Irwin pointed out the way in which 
his results might be extended to the case of longitudinal shear. This 
can be done simply be writing the Airy stress function in the form 
F = - y  Re Z, where Z is the Westergaard function. The five stress 
functions given by (1.7) and (1.88)-(1.40) determine the solutions 
of five special problems for cracks acted on by shearing forces. The 
crack extending force associated with each of these stress fields de- 
termines the extension of the crack as a shear dislocation. 

Irwin noted that the relationship of Neuber's hypothesis of a plastic 
particle to the Griffith theory has been discussed by (3rowan [2]. 
Making use of Neuber's hypothesis, Irwin obtained the following ex- 
pression for the stress intensity coefficient: 

It'= ~v l / ~  ~ -  (1.52) 

where op is the average tensile stress at the crack tip and a is [he length 
of the Neuber particle. 

Experiments on fracture resistance do not yield Op or @ separately, 
so that in order to obtain the critical size of a Neuber particle one 
must assume that the quantity Op, which is nsually the timiting value 
of the fracture resistance, is already known. 

We recall that in the theory of quasi-brittle fracture it is sufficient 
to determine the stress intensity coefficient K. 

kwin then considered the factors involved in the experimental de- 
termination of 5re �9 

In his detailed article on "Fracture" in Vol. 6 of the Handbuch der 
Physik (1998), Irwin [5] gave a comprehensive account of the various 
aspects of fracture theory. 

This survey article consists of five sections dealing with: 1) fracture 
resistance in fluids; 2) stress-strain relations in various types of fracture; 
8) formation and propagation of cracks; 4) the stress field, velocity, 
and branching of propagating cracks; and g) the effect of size on 
fracture. The subject of the present survey is covered in the second 
section of Irwin's article, which contains the basic results of quasi- 
brittle fracture theory. Irwin describes the principal Stages in the 
development of the theory and then points out that the stress state 
near the crack edge can generally be represented as a superposition 
of three basic types of stresses: the transverse (rupture or opening) 
stress related to ay, and the two shearing stresses related to rxy, ry z 
(Fig. 12).* 

The spLitting-type stress state in the case of a planar strain state is 
described by the formulas 

F=Re~+yImZ,  Z = E "  r ] ( ~ ,  z=x+iy  

ins ( 0 / 2 ) r  0 30 1 
~= =/c~ ~ (1 _ sin ~ -  sin y 5  

K cos (0 / 2) ,fi 0 
%= r ~ (  - t - s in- f f -s in-~},  

*Fig. 12 is taken from Paris and Sih [1]; see also Donaldson and 
Anderson pl]. 
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cos (0 / 2) 
~z = v (a~, -}- zu) = 2vKr ]/'27r 

cos (0 / 2) 
Xx~ = K~ ~ sin 0 30 -~- cos ~ ,  "ruz = ~xz = 0 

/Or 0 r o 0 
cos - y  ~i + 2v + sin- -~-} 

(1.53) 

Here F is the stress function and K I is the stress intensity coefficient 
related to the quantity SeI by the expression 

2CSfl ESr (I .54) 

in the case of a planar stress state we have 

~z = 0, KiS = E,~I/n.  (1.55) 

For the shearing-type stress state due to rxy we have 

F = - -  y Re Z, Z = K~r 

KIt . 0 ( 0 30 / 
% = --  ~ r r  sin ~ ~2 ,-g- cos ~ cos "-~ 

KH 0 0 30 K~r 0 
Z = ' - ~ r  sin -~- cos ~ cos --~-- . z z = - -  2v ~ sin 

KII 
v x y = _ ~ e o s ~ {  t . O . - -  sin T sin <~320- } , . x y = ' ~ x z = O  

g~7  0 0 
u =  KI2G sin -~- {2 (1--  v) --  cos~ -} 

KII ] / 'N 0 
cos .--~ {(t - -  2v) -- sin*- ~ }  w = O .  (1.56) 

Here KII is the corresponding stress intensity coefficient related to 
SeLl ( i .e .  the force producing propagation of the crack in the given 
slip) or to the shear modulus during propagation of the crack, by the 
expression 

2G~C~r 
KII*~ = n (1 -- V)" (1.57) 

Finally for the type of shear stress state produced by the stress rzy 
we have 

- -  0 
u = v = O, Gw = g i i i Im  (V~zz) = KIIr ]/2r sin-~- 

6 x ~ Gy ~ 6 z ~ T x y  ~ 0 

KIII O KIII 0 
"r:xu = ~ r  cos -~- ,  ~:xz = --  - ~ r  sin =2- (1.58) 

Here KIII and SeIII are defined by analogy with the above, and 

2GSCIH 
KHI ~ = 7t (1.59) 

The three quantities ~r SeII' ff III characterize the rates of con- 
version into other forms of energy as the crack propagates from the 
surrounding elastic strain field. 

Provided they are not accompanied by crack development of the 
first type, the shearing processes associated with<~r , SelII do not 
constitute crack-like strains in the usual sense. Solid bodies (e. g. 
ceramics) can be very sensitive to local shear. However, localization 
of the plastic zone near the crack tip in shear does not usually occur 

in metals, and (notes Irwin) the attention of researchers in the field 
of quasi-brittle fracture has been concentrated on fractureS involving 
cracks of the cleavage type. 

Irwin shows that the solutions of stress concentration problems can 
be used to find an expression for the stress intensity coefficient 

/~ = lira (lhama x ~r~-) (1.60) 
p~O 

where Oma x is the maximum stress and pis the radius at the notch 
v e r t e x .  

He then discusses problems involved in the experimental deter- 
ruination of Se. Let us consider a stretched plate with a central crack 
(Fig. 13). 

Such a specimen can be produced by sawing or milling out a nar- 

row hole perpendicular to the direction of tension and by applying the 

cleaving forces in such a way as to produce a single crack tip at the 
edge of each cutout. Let us now assume that the crack lengthens by 
the amount 6x. Let the process be slow enough to allow us to neglect 
the kinetic energy. We denote the corresponding elongation of the 
plate by 5l. The elastic part of the elongation is l e, and the plastic 
part lp. Thus, 

l = ~ + t v, 8t = 8 t  + 8z v. (1.61) 

Here F = M/e, where M is the spring constant of the specimen which 
depends on the configuration of the body (including the size of the 
crack), and is a decreasing function of the crack length. 

The strain energy of the plate is given by 

U =alr  Fle. (1.62) 

H e n c e ,  

8U = FSl e - -  1/s F28 (t/M). (1.63) 

Let us consider the equation 

e6/ = 6U -t- 6W (1.64) 

which implies that 

6 W  = FSlp q- 1/2Fr~8 (I/M). (1.65) 

If we assume that the distance between the fastenings if fixed, then 

as the crack propagates we have 

d W  d / \ t  
- -  lb'F~'~x I M ) 6 z  (1.66) d~ 6x = - -  8U1 = ~'6/p q- 

where (-SUI) is the strain energy loss in the case of a stretched spec- 

imen of constant length. If the plastic elongations are small, then 
(1.66) implies that 

t d 

Expression (1.67)- does not contain terms containing the force incre- 
ment dF, so that the quantity 5r not depend on the method of 
loading (e.g. on whether the crack propagates under constant forces 
or with constant elongation). Relation (1.67) enables us to determine 
the constant ~r experimentally. 

At the end of the section Irwin cites several experimentally 
determined constants Sec for various materials. 

He also cites certain new solutions of crack problems obtained by 
the method of Westergaard. Several collinear planar cracks under an 
omnilateral tensile stress p at infinity are desclSbed by the Westergaard 
function 

N 

where b i is a sequence of increasing real numbers and where the 
quantities a i are positive 

b i ~ a i #- a~+ 1 ~ b~+ 1. (1.69) 
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In this ease we have N free-surface cracks 

( 1 . 7 0 )  ]x - -b i l<a  i. 

The stress intensity parameter at the right-hand end of the j - th  
crack is of the form 

N ~z Jl= {,--' } 
//'J = P ~ H (aj + b i - -  bi)~ " ( 1 . 7 1 )  

In the case of the eoHinear crackS considered by Westergaard (see 
the second formula of (1.7)) the stress intenSity coefficient turns out 
to be 

l la)% K = p  (.-~- t g - -  �9 (1.72) 

The stress intensity coefficient in the neighborhood of a point in 
case (1.38) is given by 

K = a - - - ~ "  (1.73) 

Since the quantities Z and K are additive for stress fields, the solu- 
tion of the problem for any pressure distribution along the crack edges 
can be obtained from (1.38), (1.78) by setting P = p(b) db and inte- 
grating these relations over b. 

Though we are unable to describe in detail the rich contents of the 
other sections of Irwin's article, we must consider his analysis of 
crack edge structure (See. 4, Subset. II, pp. 557ff.). 

Z g ~  a 

80 /5"0 

b 

8g /60 

Fig. 

Analysis of equations (1.58) for an open crack shows that the max- 
imum tensile stress does not lie in the crack plane xz (Fig. 12). The 
angle 0 at which the maximum tensile stress is achieved for a small 
fixed distance r from the crack tip is "+ ~r/a'(Fig. 6). Hence, the max-  
imum fracture near the crack tip can occur at O = 4-rEin, where the 
components of the shearing stresses are sufficiently large, and where 
the tensile stresses are maximum.  When the new elementary fractures 
forming away from the idealized site of the principal crack reach 
a sufficient size, the small but gradually developing defects join them 
to the principal crack, imparting a complex structure to the edge of 
the latter. The degree of roughness of the fractuxe surfaces depends 
partly on the yield of the material  which hinders the formation of 
local cavities, etc. Owing to the nature of formation of stress fields 
and their character, it  is possible to avoid rough crack surfaces only 
in exceptional cases, e .g .  in the splitting of brittle single crystals. In 
general the character of crack formation depends on the yield of the 
material ,  the dIrections of its weakening, the nature of the local 

defects, and the stress fields. For example,  in the case of low-carbon 
steel at room temperature the chief contribution to the formation of 
small  fracture elements is that of the.maximum-shearing-stress planes 
even if the principal crack lies in a plane normal to the maximum 
normal stress of the overall stress field (Parker, 1967). The chief role 
in the same material at low temperatures is played by cleavage,cracks; 
the fracture surface contains many smaii crack formation elements in 
planes almost parallel to the principal crack. 

Irwin places his main emphasis on problems of unstable rapid frac- 
ture. In Sec, 5, Subsec. 16, pp. 586ff of his article he discusses severai 
problems concerning the stable (self-arresting) process of crack prop- 
agation. 

Problems of experimental and theoretical determination of the 
fracture constants ~c for rotor-type structures were investigated by 
Winne and Wundt [1]. 

Fig. 8 

These authors considered disks with an inner hole weakened by 
crack-simulating grooves. They also conducted experiments to de- 
termine the fie of scored specimens in bending, concluding that the 
quantity '~c is a material  constant. The Winne-Wundt paper provoked 
a lively discussion by specialists (Felbeck, Irwin, Peterson, Robinson, 
and Wells). 

Experimental determination of the constants ~c  is also the main 
subject of a paper by Irwin, Kies, and Smith [1]. In their abstract 
of  the paper the authors note that determination of the quantity ~fe 
together with analysis of the stresses and of the initial crack length 
is of great importance in analyzing the fracture of jet aircraft fuselages, 
turbogenerator engines, jet engines, etc.  

They describe various experimental methods for determining the 
constant ~c'  namely tests involving th e bending of scored specimens, 
stretching of circular Scored specimens, and stretching of centrally 
scored fiat sheets. They discuss the differences between the types of 
fracture occurring with planar straining and in a planar stress state. 
In planar straining fracture begins at the center of the scored incision 
(along the crack edge inside the material); in a planar stress state the 
shearing fractUre begins at the plate surface. 

Attainment of the critical value g~c by the quantity•is associated 
by the authors with the onset of rapid unstable crack growth. They 
attribute this fact to the character of the experiments considered, in 
which the initiated crack growth led to fracture of the specimen. 
However, they also describe an experiment on the opening of cracks 
of length 2a in a plate of width l bycentxally applied forces P(Fig. 14). 
Making use of solution (1.40), the authors obtained an expression for 
of the form 

22~ 

Crack extension in a fixed loading state in such experiments has the 
effect of reducing the stresses at the crack tip and the crack extension 
process is stable (self-arresting). , 

The \authors note that the constant ~fc determined through experi- 
ments on stable (equilibrium) cracks turns out to be  somewhat smaller 
than its value obtained by experiments involving stable crack growth. 

This fact has to do with the dependence of the material properties 
on the straining rate: the more rapid the crack growth, the greater the 
resistance. 

The authors suggest that ~e or K c in this case be determined by 
way of the relationship between the applied load and the crack length, 
in terms of (1.74). 

i a I 

Fig. 9 

They also discuss the effects of temperature, specimen thickness, 
and dynamic load on fracture. In the final section of the paper on 

"Applications of Fracture Resistance Analysis* the authors discuss the 
prevention of cracks in such structures as pressurized aircraft cabins. 
They describe a method for computi :g  the appropriate crack arrest 
conditions. 

In his detailed paper [7] Irwin again presents the principal concepts 
of quasi-brittle fracture mechanics.  He cites several new expressions 
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for the stress concentration coefficients. The paper includes a detailed 
discussion of experimental data as does his article [5]. 

In 1958 Bueckner pubKshed a paper [1] concerning the changes in 
the elastic energy of a body during crack development. 

I ,qL>,: ', 

Fig. I0 

Following Bueckner, let us consider a body of volume v bounded 
by the surface 8 = Sp + S u (Fig. 15). We denote the body forces by 
Xi; the forces Pi are given on the portion of the surface 8p, and the 
displacements ui0 are given on S u. The initial stress-strain state of the 
body with a crack prior to its development is characterized by the 
teusors oij, eij and by the displacement vector u i. 

Let us assume that the side surfaces nl, az of the crack separate 
under the load and that they are free of surface forces. Let us consider 
the virtual extension of the crack which results in the formation of 
its additional side;surfaces a], a~ indicated by dashed in Fig. 15. 
The mass and surface forces are assumed constant. The stress-strain 
state of the body with the altered crack (the varied state) is char- 

acterized by the components oil, eii, and u~, respectively. 
From now on we can interpret the initial state as the state Of a 

body with an extended crack. The completely defined forces p[ must 
then act along at', these forces hold the crack in the closed state 
over this segment (the fracturei[ui] over the segment of length l all 
in the initial state is equal to zero). It is clear that the vector p~ 
assumes the opposite direction at the opposite edge of the crack. 

The change in the work done by the external forces during prep- 
agation of the crack is of the form 

W~ = f Xi (u ( - -  a i) dv + S p' (u ( - -  ul)dS. (1.75) 
v Sp 

The increment in the work of the internal forces can be expressed 
a s  

Wt = U -  U' (1.76) 

where the strain energies of the initial and varied states are given by 

U = W-_ ~i,e~ dV, U' = -~- ~i/ei/dV. (1.7'/) 
v V 

Bueckner writes the condition of crack propagation in the form 

w = w~ + w~ > ~= I a, '  I (1.78) 

where W is the total work increment and at' is the crack area 

increment. 
Let us introduce the following expression for the mixed energy of 

the body: 

I ' I ~ , 

v~ = T 1 % " C  ~ = T 1 ~j',i dv. (1.~9) 
V V 

Expressions (1.76), (1.77), and (1.79) imply that 

- w~ = v" - u = @ i(%i"  + :~p(%, ' - ,~ / )~ tv .  (1.8o) 
V 

Let us consider two ancillary states: the "sum" state with the stresses 

+ = oi) + the strains ei+j = eli + eij, and the displacements ~ ~ j, 

u i = ul + u i, and the "differencd" state with the respective components 

~ = ~ i - o~] --'e~] -e~]. u~ = u i - u i. 
In accordance with the above interpretation of the initial state the 

sum and difference states can be expressed as follows. 
The sum state corresponds to the stressed and strained body V with 

an extended crack under the body forces 2X i, the forces 2pi at Sp, the 
displacements 2hi0 at S u, zero surface forces at al, a2, and the sur- 
faces forces 1~ along at', al. Similarly, the difference state cor- 
responds to the absence of body forces in the body, to the absence of 
forces and displacements at Sp and S u, and to the absence of surface 
forces at al, oe. It is determined by the surface forces p~ at a], 

only. 
Now, by virtue of the Betti theorem we can convert from the in- 

ternal to the external forces and rewrite integral (1.80) in the form 

- - W i = U ' - - U = + ~ l a i i + % - d V =  

= I X i u i - d V ' 4 - I  p l u i - d S ' } - +  ! Pi*ui-dS" (1.81) 
g ~p m'+a/ 

From (1.81) and (1.75) we obtain 

W = W e + W i = -- T pi*u( dS 
al'-~-a ~" 

(1.82) 

Applying the Clayperon theorem and converting from the external 
to the internal forces, we transform (1.82) into 

2 Pi u i - d S = - 2 -  aii-eij-dV--='-'U(-) (1.83) 

where U (-) is the strain energy of the difference state. 
The energy U ( ' )  of the difference state is always nonnegative. 

Analysis of relations (1.78) and (1.82) indicates that the required change 
in energy W is equal to the work done by the forces Pi in dosing the 
crack over the corresponding displacements. Irwin used this as a 
hypothesis in deriving formula (1.48). Bueckner justified this procedure. 

We infer from (1.78), (1.82), and (1.83) that the condition of 
crack propagation can be written as 

u (-) ou(-) 
lira --  >/5f e (1.84) 

al'~0 ] al' L Oa 

where 0U(')/0a is the rate of liberation of elastic energy. 

32 

Fig. II 

Bueckner noted that since crack propagation is affected only by 
the energy U (-) of the difference state, nothing is altered b?/sub- 
tracting the same stress-strain state from the initial and varied states. 
This state can he taken in the form of the components c~j, e~j, ulj 
characterizing the stress-strain state of the uncracked body V acted 
on by the same body forces and boundary conditions at S. The stress- 
strain state oij -- olj, eij -- e'~j, u i -- u~ corresponds to the state of 
the body V in the absence of body forces with zero boundary conditions 
at S. The crack is acted on by the forces p~ arising in the uncracked 
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body at the surface corresponding to the crack surface. We can 
therefore assume that extension of the crack depends solely on the 

0 
forces Pi applied to the banks of the crack. 

Bueckner then considers two special cases. Let us assume that S u = 
= 0, i .e. ,  that the forces Pi are defined over the entire side surface 
S of the body. In this case integral (1.81) can be transformed into 

. t g 
U" - -  6 =- "-if- 3 vii+eli- dV = 

V 

j %-e i i+  dV - -  - -  1 = 2 p i u i *  d S  (1.85) 
V a,'-}-a:" 

with the aid of the Betti theorem. 
Noting that 

I pi*ui  dS  = 0 (1.86) 
al'-~rLz" 

since the quantity u i is the same at the surfaces al, and since Pi* as- 
sumes the opposite sign, we obtain 

l pt*ui- dS = 1 Pi*ui + dS.  
ill -~1~ al" 

(1.87) 

Comparing (1.82), (1.85), and (1.87), we find that 

W e  = 2 U  (-), W i  = U - -  U'  = - -  U (-) W = U (-) .  (1.88) 

Thus, the strain energy diminishes under a constant load, but the 
applied forces supply double the strain energy. It is the difference 
between the two energies which is expended on crack extension. 

Let us now consider crack extension in the case of fixed boundaries. 
We assume here that the varied state experienced the same displace- 
ments as the initial state along Sp and the same fixed displacements 
ui0 along S n. In this case the displacements u[ of the difference 
state are equal to zero along S. The expression for W e then represents 
the virtual work done by the body forces alone. If there are no body 
forces, then 

W = U (-) = U -- U'. (1.89) 

The strain energy diminishes with crack extension, and this decrease 
contributes to the extension process. 

Fig, 12 

Bueckner notes that the energy U ( ' )  of the difference field in the 
case of fixed boundaries is smaller than the energy of the difference 
field in the case of fixed loads. This difference tends to zero for in- 
finitely small crack extension, however, He considers a one-dimen- 
sional elastic system as an example. His argument is entirely similar 
to that used by irwin [5] in connection with relations (1.61)-(1.67). 

Bueckner derives Irwin's formula (1,46) in the case of crack devel- 
opment under a constant load. Similax arguments can be applied in 
the case of fixed boundaries. The crack propagation criterion becomes 

.~ > / 5 ~  c . ( 1 . 9 o )  

He considers a cracked rotating disk as an example. Irwin took 
part in the discussion of his results. 

I 0K 

Fig. 13 

By 1957/58 the studies of Irwin, Orowan, Bueckner, et al. con- 
tained the final formulation of quasi-brittle fracture theory for the 
principal cases of straining. Ample experimental evidence in sup- 
port of the theoretical findings was adduced in due course. 

w Other approaches to the theory of qua~-I~lttle fraculte. Working 
outside the framework of Gtiffirh's studies, Westergaard [3] (1933) and 
[2] (1939) proposed a force approach to the theory of cracks in brit- 
tle materials such as concrete. 

In his first paper [1] Westergaard investigates ferro concrete beams 
with cracks in the concrete. ;He proceeds on the basis of the con- 
dition that the tensile stresses cannot occur at the tip of a crack in a 

concrete beam compressed by the force P (Fig. 16a), and that the 
crack in this case must lengthen until such time as the stress curve 
assumes the form shown in Fig. 16b. (We take this opportunity to note 
the fallacy of Barenblatt's statement on p. 12 of his paper [9]: "Wes- 
tergaard did not relate the condition of finite stresses to the determina- 
tion of crack length, which he assumed to be given". ) 

Westergaard's analysis is based on the solution of the problem of 
elasticity theory in the absence of a tensile stress concentration near 
the crack tip 

rc V;- 
ar = T (  - s i n  2.50--sin 0.5(}) 

K 1G- 
% = ~ (sin 2.50 -- 5 sin 0.50) 

Tr0 = ~ (-- cos 2.5t} + cos 0.58) (1.91) 

where K is a constant which depends on the magnitude of the compres- 
sive forces. The coordinate system is shown in Fig. 4b. 

His solution is approximate since the boundary conditions are not 
satisfied exactly and the effect of the reinforcement is allowed for 
approximately. However, these conditions do not affect the character 
of stress and displacement distribution near the crack tip. 

The solution of elasticity theory yields a relation giving the crack 
width in the form 

8[/  i s  
~=~-~r" (l--~a). (1.92) 

Equation (1.92) implies that the merging of  the crack banks at the 
tip must be smooth, i .e . ,  that 

dr =0 

Having allowed for the approximate character of his expressions, 
Westergaard ['1] arrived at a wedge-shaped crack opening, 

-~- r=o 8K ] / a  - 3Z (1.04) 
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In his paper [2] mentioned in See. 1 above, Westergaard gives the 
exact solution for the opening of a crack by concentrated forces under 
the condition of finite tensile stresses at the crack tip. 

- - - . - - - . - - _ - - - . . . _ . _ _  
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2= 

Fig. 14 

Notions concerning the smooth merging of crack edges were devel- 
oped by Elliot [1] (!947). Rebinder [1] (1947) noted the wedge shape 
of a crack at its tips. Frenkel [1_] (1952) attempted to refine the Grif- 
fith theory to cover cracks with smoothly merging edges. 

Zheltov and Khristianovich [1] (1955) investigated the problem of 
an infinitely elastic body weakened by a straight-line crack, They 
assumed that a plane is compressed by a uniform pressure at infinity 
and that a uniform pressure is applied over a finite segment of the 
crack banks (smaller than the length of the crack). These authors for- 
mulated the finite-stress condition independently of Westergaard [1, 2]: 
"the stresses at the crack tips in rock must be finite; the crack could 
not terminate Otherwise". They used this condition to determine the 
dependence of crack length on the applied forces. In subsequent studies 
this hypothesis was used in dealing with certain problems of crack prop- 
agation in elastic materials with special reference to mining and oil 
drilling problems (Barenblatt and Khristianovich [1] and Zheltov [1, 2]). 

Barenblatt's paper [1] was'mentioned in Sec. 1. He determined the 
relationship between crack length and load on the basis of the hy- 
pothesis of finite stresses at the crack tips. Using the Sneddon solution 
[2], he also comidered certain particular solutions for a three-dimen- 
sional circular crack acted on by an axisymmetric load. 

Fig. 15 

The aforementioned solutions of Westergaard [1,2], Zhehov and 
Khristianovich [1], and Bamnblatt [1, 2] correspond to the case T = 0 
from the Griffith standpoint and to the case ~c  = 0 from the standpoint 
of Irwin and Orowan. 

P.zhanitsyn [1] (1956) proceeded (as did Frenkel [1]) from the notion 
of a sharp-tipped circular crack. NotingcertaininaccnraciesinFrenkel's 
analysis, he introduced a small tip zone a of crack edge interaction 
forces. Figure 17a shows the crack tip, and Fig. lqb the curve of these 

crack edge interaction forces. Here o 0 is the tensile stress due to the 
external load, a. is the theoretical tensile strength, R is the area under 
the interaction force curve (or, as Rzhanitsyn calls it, the curve of 
"additional stresses"), 6 is the distance between the banks of the layer 
containing the crack, and 6. is the distance corresponding to the max- 
imum R or %. The quantity R does not depend on o 0 and is given by 
the formula 

/~ = ~ ~ (6) dx. (1.95) 
0 

Rzhanitsyn then carried out an energy analysis of crack extension 
and estimated critical crack sizes. He also developed a method for 
calculating the critical crack radius in the case of a given dilatation. 

In his later papers Barenblatt [3, 4] (1959) followed Rzhanltsyn [1] 
in introducing a small zone near the crack edge characterized by the 

action of coupling forces. In [4] he considered the case of a space 
weakened by a penny-shaped crack under an axisymmetric load. 

On the basis of the smooth-merging condition and Sneddon's solution 
[2], he obtained the following crack propagation condition: 

t rp (r} dr a V = K  - - 7 '  K = ~on~t (1.96) 
o 

where ais  the radius of the crack, p(r) is the load, and K is the coup- 
ling modulus. 

In [5] he considered the planar problem. The expression analogous 
to (1.96) turned out to be 

a 

r Vf ; '  K=const. (1.97) 

The same paper also contains the following general rule: "the crack 

tips are determined by the condition that the stresses acting there are 
computed without allowance for the coupling forces go to infinity ac- 
cording to the law 

K / ~ ] / ' ~ " ' .  ( 1 ,98 )  

This rule makes it possible to exclude the coupling forces as such 
from iconsideration. 

a b 

Fig, 16 

We note that the quantity s characterizes the distance from the crack 
tip and coincides with the r in (1.53). 

The above quotation implies that Barenblatt's constructions led him 
to the crack development criteria of the Griffith-lrwin theory. (We note 
in this connection,that some authors have displayed insufficient ac- 
quaintance with the history of the problem. Thus, in his abstract of 
Sih's paper [6] (RZhlMekhanika, no. 2, 1966, 2V 368)R. A. Salganik 
writes: "The author errs in stating that the approach based on intensity 
coefficients was originated by Irwin. The theory of cracks based on 

such notions was developed by G. I. Barenblatt (PMTF, no. 4, 1961)") 
In [6] he considered the relationship between the force and energy 

approaches in quasi-brittle fracture theory. He obtained expressiom for 
the rate of liberation of elastic energy for a space containing a single 
crack in the case of the axisymmetric and planar problems, 

0__W__W __ 8 (1 - -  'v ~ ~(  rp (r) dr "[2 
oa -- z tj ~ l ,  

0 

a 

o w  8 <1 - .'-) ~ r (  p (~1 e~ 
0a - g t J ~ J  

0 

where W is the elastic energy. 

(1.99) 

ILl ~ I l l t l l l l n l l l l n l l t l l l  I%~ u 

Fig. 17 

Comparison of the two equations of (1.99) and of (1.96) with (1.9q) 
indicates the equivalence of the force and energy approaches. (The 



J OU RN A L OF A P P L I E D  MECHANICS AND T E C H N I C A L  PHYSICS 71 

establishment of this equivalence and the development of the force 
method was one of the principal achievements of the Griffith-Irwin 
theory. It was accomplished in the general case in the aforementioned 

studies of Irwin, Bueckner, et ai.) 
In 1960 there appeared Barenblatt's paper [7] concerning the finite- 

ness condition in continuum mechanics. Barenblatt used the finiteness 
condition as the basis of his crack theory, whose concepts are set forth 
in papers [8-11]. The results are discussed in papers by Ivlev [1] and 

Cherepanov [11]. 
In [9] (1964) Barenblatt introduced the universal coupling coefficient 

function (see also Sih, Paris, and Erdogan [1], (1962)) and considered 
the propagation of equilibrium cracks, the construction of the limiting 
surface of lead parameters ki, and modeling in the case of brittle 

fraetttte. 
In 1964 Keer [1] applied the notions of coupling forces and smooth 

merging of crack banks. Working within the framework of classical 
elasticity theory, he determined the coupling stresses and the crack 
zone characterized by the action of coupling stresses, He also considered 
an axisymmetric crack in the cases of homogeneous tension and shear, 
and also the analogous two-dimensional problem with homogeneous 
tension. In their monograph [2] Landau and Lifshits (1965) present the 
theory of a smoothly merging crack in an elastic medium using the 
mathematical apparatus of dislocation theory. They note that "in its 
literal from the above theory.. ,  is, in fact, valid for ideall brittle 
bodies, i .e .  for bodies which retain linear elasticity until fracture 
(e.g. glass, fused quartz)." 

The stress state near the tip of a smoothly merging (parallel) crack 
was also considered by Baker [I]. Problems concerning the fracture 
criterion for the development of a crack with coupling forces acting 
at its tips were discussed by Willis [1]. 

Let us now make some remarks concerning studies based on the 
finite-stress hypothesis. By (1.26), the change in energy associated with 
the formation of a crack is given by 

6W = 6II. (1.1001 

The work expended on the formation of the new free crack surfaces 

is different from zero, so that &r # 0. This means that the change in 
the elastic energy of the body during crack formation is always different 
from zero, i .e .  that 6W ~ 0. By (1.35), the quantity ff differs from 
zero for 6W ~ 0, so that the finite-stress hypothesis can be used as an 
assumption based on the possibility of neglecting 5W in those cases where 
the material constant ~fc is small even though, strictly speaking, ffc  ~ 

0. The authors of the theory of quasi-brittle fracture assumed that the 
material in the tip zone is not subject to the laws of linear elasticity 
theory and at the force condition can be formulated on the basis of the 
relationship between the stress intensity coefficients and the rate of 

elastic energy liberation in the body. According to the estimates of 

Irwin e t a l .  the contribution of the tip zone to the general expression 
for the rate of energy liberation in quasi-brittle fracture is negligible. 

' 3" 
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Fig. 18 

The above models based on the notion of smoothly merging crack 
banks are based essentially on the preservation of the laws of linear 
elasticity theory in the tip zone. The coupling forces are assumed to 
produce displacements which conform to the linear elasticity laws. 
This view is not valid in the desciption of quasi-brittle fracture. 

We recall that, by definition, brittle fracture is accompanied by 
the formation of a small plastic zone near the crack tips. 

w Further developments in quasi-brittle Iracture theory. After the 
appearance of the fundamental studies of Gtiffith, Irwin, ,and other 
researchers the theory of quasi-brittle fracture continued to develop 
rapidly largely through the expansion of its range of applications. 

4~ a b 
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Fig, 19 

An integral interpretation of the Griffith-Irwin theory was developed 
by Sanders [1] (1960). Let us consider a plate containing a crack of 
length L(c 0 '  where c~ is a parameter which increases with increasing 
L. Let the stress, strain, and displacement components oij, eij, n i be 
known functions of the coordinates x, y, of the time t, and of the 
parameter cL Further, let C be a closed curve surrounding the crack. 
According to the Griffith-Irwin theory, virtual changes in the length 
of the crack entail an energy balance: the rate of work performed by 
the forces at the contour C is equal to the rate of increase of the strain 
energy stored inside the contour C in the material plus the rate of 
energy expenditure on the lengthening of the crack, i .e .  

�9 du"i J ~Lcl:~ t T  i cts= 1~- r rp~ds~-~ 
,) dr " Z a~ de dt 
C C 

(1.1Ol) 

where T i are the forces at tlre contour and is a constant. 
Equation (I.I01) can be transformed into 

1 ~ [ c~u i OT i'~ dL 
S = T  ~ ~ T i ' - O ~ - - u i ' ~ - ) d S = ' ~  d~ " (1.102) 

Relation (1.102) is the Gtiffith-Irwin fracture criterion expressed in 

integral form. Relation (1.102) must be independent of the contour C. 
Sanders [1] noted that the results remain valid if the contour C is 

open and begins and ends at the free surfaces of the crack, whose tip it 
surrounds, He rewrites criterion (1.102) in terms of Muskhelishvili 
functions [1]. As an example he considers a rectangular plate contain- 
ing a crack in the case of fixed boundaries and in the case of a constant 
load. Another of his examples relates to the Westergaard solution 
(1.7). 

Survey [1] by Donaldson and Anderson concerns applications of 
quasi-brittle fracture theory to aircraft structures. These authors sum- 
marize the principal theoretical results accumulated by 1961. 

Williams [5] investigated the determination of the singularity of the 
solution near a crack edge in a bent plate provided by elasticity theory. 
(Some of Williams' hypotheses are discussed in communication ['1] 
by Redwood and Shepherd.) 

The results obtained by WilIiams [5] were later used by Sih, Paris, 
and Erdogan [1] for determining the corresponding stress intensity 
coefficients in bending. The latter paper also contains a discussion of 
the destruction of a part of a crack-weakened sheet struenzre loaded as 
in Fig. 18. The stress intensity coefficients due to the action of the 
forces in the plane of the plate are given by. 

2V /Vx~/ I J 
g~ = ~ d/~, K~t = T ~.2 a.lO3) 

where h is the thickness of the plate. 
The intensity coefficients in bending are of the form 

6My '/2 8vQa~h 6Mxy V .__ 8Qa~h 
k l =  h~ a. + ~ ,  ks=-"TV. ,z ~ , ~ .  (1.104) 
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Extension of the Griffith-l.rwin theory to such problems leads to the 

fol/owing conclusion: unstable crack development begins upon at- 
tainment of a certain limiting value 

l (Kz, Kn, ka, k~) = 0 (1.105) 

by a certain combination of stress intensity coefficients. 

However, this statement does not take into account the interaction 
of the crack surfaces. In the case of bending, one side of the crack 
propagates faster than the opposite side. This fact is also ignored in 
relation (1.105). The authors note that the introduction of relation 
(1.105) is a step towards the more general use of the Griffith-l.rwin 
theory, although any practical investigation must be accompanied by 
verification of the implications of this procedure. In conelnsion they 
note that the chief contribution of their study is to point the way to 
the more general use of the Griffith-Irwin fracture theory. 

In his paper [8] Irwin carries out an approximate analysis of in- 
tensity coefficients for a blind crack in a plate (Fig. 19). He assumes 
for simplicity that the crack is a semi-ellipse in plan whose boundary 
is described by the equation 

xl~ , zl---~ = 1 ,  a ( c .  ( 1 . 1 0 6 )  
a2 "7- C~ 

The study of'a planar elliptical crack carried out by Green and 
Sneddun ['1] showed that the tension o normal to the crack makes it 
ellipsoidal in shape. Irwin assumes that the normal displacement of 
the crack surface is given by 

(1.1o ) 

where ~0 is one-haLf of the maximum distance between the crack boun- 
daries. 

Expressing the boundary of the ellipse parametrically in the form 
xl = a sin ~ and zz = coos ~0, Irwin arrives at an expression for the 
quantity 27, namely 

~ = ~ ( ' - -  v') ~" ( + ) ( a2 e~ + c' ~in (1.108) 

where ~ is an elliptical integral, 

(1.169) 

Analysis of relation (1.108) indicates that ff assumes its maximum 
value when the crack boundary intersects the minor axis of the ellipse. 
Thus, an elliptical crack must tend to become circular with increasing 
tension 0 (this does not, of course, apply in the case of an anisotropic 
material). 

Irwin discusses the corrections which must be made in applying the 
above results to blind cracks. His final expression for the intensity 
coefficient is of the form 

1.2 r 
K = (D~ -- 0.212 (~/~us) '~ (1.110) 

where ay s is the yield strength of the material in nniaxial tension. 

He also discusses the corresponding experimental data of Srowley. 
Problems of determining the stress intensity coefficients near el- 

liptical holes are also discussed by Panasyuk [4-6, 9, and 12] and by 
Kassir and Sih [1]. 

Cherepanov formulated several problems and adduced some con- 
siderations concerning crack development and fracture. In [4] he 
considers crack development during the sinking of an indenter. In [5] 
he develops a hydrodynamic formulation of certain static problems 
concerning cracks in solids, ha [7] he considers crack propagation in 
compressed bodies. 

Sih [2] discussed the extension of the notion ofquasi-brittle fracture 
theory to the case of thermal stresses. Using the Kosolov-Muskhelishvili 

formulas, he obtained the following expressions for the stress intensity 
coefficients: 

2 2 
K I = - - ~  Re [AI, K n = -- ~ Im [AI (1.111) 

w h e r e  a is one-half of the crack length and where the Constant A occurs 
in the expressions for the stress functions in the case of a steady two- 
dimensional thermal stress field, 

r (z) = A log z -}- % (z), ~ (z) = A- log z - - %  (z). (1.112) 

Other studies include that of Jahsman and Field [1] who discuss the 
generalization of the energy notions of Grfffith for the case where 
residual (seLf-balancing) stresses are present in a body. 

MeClintock and Walsh [1] consider the application of @iffith crack 
theory to rocks under pressure. 

Paris and Sih summarized the state of knowledge gained by 1964/65 
in their extensive survey [1] of foreign materials. 

Mossakovskii and Ryhka [1] (1965) proposed a method for constructing 
a strength theory based on the notions of material fissility. They as- 
sume that the cracks are perpendicttlat to the surface of the plate, that 
they propagate in straight lines, and that the surface tension and crack 
length are material Constants. 

In his paper ['1] (1966) Cotterell analyzes the expansion of stresses 
in power series (1.16)-(1.20) about the crack tip in the symmetric case 
b i -- 0 (see Williams [3]). He shows that if the first coefficient of the 
expansion is related to the stress concentration coefficient and charac- 
terizes the onset of fracture, then the coefficient of the second term of 
the expansion represents the stability of the direction of crack/develop- 
ment. The coefficient of the third term of the expansion represents 
the stability of crack propagation, and, finally, the fourth coefficient 
represents the increase or decrease of the maximum ishearing stresses 
along the line extending from the crack withincreasing distance from 
the crack tip. 

Swedlow ['1] discussed the possibility of using Griffith's ideas in al- 
lowing for the effect of stress component distribution on fracture. 

Spencer [1] considered the change in energy in a body due to the 
formation of a crack. In contrast to Sneddon's case [1], the forces and 
displacements are applied to the plate contour rather than at the crack 
surface. Similar problems are dealt with by Sih and Liebowitz in [3]. 

We must also take note of the general analysis of the energy change 
associated with crack propagation carried out by Rice [3]. 

Cherepanov [8] (1967) analyzed the conditions of crack propagation 
on the basis of general energy considerations. Surrounding the crack 
tip by a circle of,radius R, he obtained, for example, the following 
energy balance equation for the case of isothermal development of 
quasistatic crack*: 

*Relation (1.101) can be rewritten in the form (1.113). Let us set 
c~ = L and direct the x, axis along the Crack. Making use of the fact 
that 00/0L = -00 /0x  (Cherepanov [89, we find that relation (1.101) 
becomes 

2 dx Tiu~ds--  Ti  Oui d s = ~ c .  (1) 
Ox 

C C 

The Clayperon theorem and the Ganss-Ostrogradskii formula imply 
that 

2 dx ,~ - - "  02 
c D C 

where W ~ is the specific elastic potential equal to the specific internal 
energy in the case of an elastic body; (nx) is the angle between the 
normal to the contour C and the x-axis. 

Substituting (2) into (1), we obtain relation (1.113). 
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Fig. 20. 
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A)_planar strain state; B) planar stress state; a) specimen; b) elastic singularity; c) elasticoplastic 
large plastic strains; e) grains, inclusions, cavities; f) fine-grain slip bands; g) fine-grain struc- 

ture; h) dislocations; i) ion and electron cover. 

2~ 

B ![pUcosO--(=xeosO+~xysin6) O-~--- 

Ov ldO - -  ( ~ c o s O  + % sin0)~)Z j = 2 T  (1�9 

where pU is the internal energy per unit volume; T is the surface tension 
(or the surface energy density). 

Making use of asymptotic expansions (1�9 and of the equality of 
the internal energy ttJ of an elastic body to its specific elastic potential, 

= W o = t (i - -  v~) E-1 ( ~  § % p +  pU 

Cherepanov arrives at Irwin's formula for the rate of energy ~iberation. 
Ershov and Ivlev [1] (1967) formulate the problem of determining the 

direction of crack development on the basis of energy considerations. 
The theory of quasi-brittle fracture is one of the simplest phenom- 

enologieal theories of fracture, but its simplicity excludes a high de- 
gree of generality. The fracture of various materials under various 
conditions is by no means always quasi-brittle, and general fracture 
theroy requires further study and elaboration�9 

Figure 20 (taken from McClintock and Irwin [1]) shows the range 
of basic phenomena which can be used as a basis for considering the 
crack development process�9 The thickness-to-width ratio of the specimen 
is ~10 -~, Until such time as crack development has been analyzed 
on the basis of the atomic notions of solid-state physics it will be nec- 
essary to use Warious model, each of which has its own range of ap- 
pllcability for describing fracture processes�9 The more perfect the 
fracture mechanism at the basis of a model, the more reason there is 
to expect an extension of the range of describable fracture-related 
phenomena�9 

The theory of quasi-brittle fracture is in this sense the simplest model; 
the characteristic scale of the effects which it describes is designated 
by unity in Fig. 20. 

At the same time we note that the various fracture models which 
entail the analysis of elastic stress fields and the hypothesis of local 

fracture near the crack tip for each individual type of crack inevit ablyded 
to the formulation of the force conditions of the Griffith-Irwin theory. 

Fracture theory is receiving much attention abroad. Let us note some 
of the milestones in its development in recent years. 

In 1961 there appeared Sneddon's monograph [3] The Crack Problem 
in the Mathematical Theory of Elasticity based on a series of lectures 
presented at North Carolina State College�9 

In September 1961 Cranfield, England was the scene of an inter- 
national symposium on crack propagation whose proceedings appeared in 
two volumes in 1962 (Proceedings of the Crack Propagation Symposium, 
The College of Aeronautics, Cranfield (1962)). 

An international conference on fracture problems was held in 
Washington in 1962. The papers presented appeared in the volume 
Fracture of Solids, Proceedings of the iinternational Conference in 1968 
(2nd ed., 1965). The Russian translation of the Proceedings published 
by "Metallurgiya" Press in 1967 omits the section on macroscopic crack 
theory�9 The Russian edition does not include the fundamentally impor- 

rant paper by Drucker (which the reader will find translated in the 
collection "Mekhanika% no�9 1, 1964) and sevenpapers by the following 
authors: Craggs, McClintock [3], Goodies and Field [1], Marsh (two 
papers), Williams [7], and Grundfest. 

In 1959 the US Department of Defense organized the special E-24 
Committee under the auspices of the ASTM (American Society for 
Testing and Matetials) to investigate the s=ength of structures weakened 
by eracktype defects. The need for a quantitative approach to the 
problem of crack defect tolerances began to be felt in the US in con- 
nection with recurring structural failures of the early Polaris rockets, In 
1964 the Committee held a conference in Chicago. Its proceedings 
appeared under the title Fracture Toughness Testing and Its Applica- 
tions (Philadelphis, 1966). 

Problems of fracture theory have been discussed at various inter- 
national and national congresses, conferences, and symposia in the 
US, Great Britain, Japan, and other countries.* 

An international conference on fracture theory was held in Japan 
in 1965 (see the three-volume Proceedings of the First IntemationaI 
Conference on Fracture, held in Sendal, Japan in 1965 (1966)). The 
majority of the papers presented dealt with:elasticoplastic, visco- 
plastic, fatigue, and other types of fracture. 

w The relationship between the quasi-brittle fracture and stress 
concentration theories. The theory of quasi-brittle fracture is directly 
related to the theory of stress concentrations in elastic media. 

If Omax is the maximum stress and p is the radius of curvature at the 
vertex of a groove or hole, and if the groove or hole becomes a slit 
of zero width as p --> 0, then the stress intensity coefficient is given 
by 

KI = p-.o\lim ( g~" ~ m a x 2  p'h) (1.114) 

for cracks of the first type, and by 

KH, Ul = lira ( ~ =max p'h) (1.115) 
p-~0 

for cracks of the second and 'third type�9 
The solutions of problems of stress concentration theory obtained 

by Neuber [1], Savin [1], Paterson [1], Isida [1], et at.. can be used 
directly for determining stress intensity coefficients in crack theory. 

Following Paris and Sih [t], we can write out the formulas for the 
stress intensity coefficients in the case of the planar problem. If the 
Westergaard function near the crack tip is given in the form Z(z), 

*We take this opportunity to call attentio~ to the need for more 
translation into Russian of papers on fracture theory in general and 
on the theory of quasi-brittle fracture in particular. We ml} lack 
Russian translations of the basic foreign materials on quasi-brittle 
fracture�9 Not a single paper on quasi-brittle fracture theory has ap- 
peared in the Collection: "Mekhanika" ~in the last decade. Trans- 
lations of some articles on fracture theory will be found in (J. Appl. 
Mech�9 which has been appearing since 1961 in Russian, and aIso 
in other journals in the same series. 



74  Z H U R N A L  P R I K L A D N O I  M E K H A N I K I  I T E K H N I C H E S K O I  F I Z I K I  

where z = re iG, then 

K i = l i r a  (2~z)V'Zo i = I,  I I ,  I I I .  (1.116) 
[zb-,.o 

The formulas for the intensity coefficients given in the first sub- 
section of the present paper can be obtained from (1.116). 

As already noted, the Westergaard formulas are a special case of 
the Kolosiv-musldaelishvili formulas. The general expression for the 
biharmonic function �9 can be written as 

q) = Re [ ~  (z) + X (z)]. (1.117) 

The sum of normal stresses becomes 

(Yx § % = 4Re [(1)' (z)] (1.118) 

where the prime denotes the derivative with respect to z. 
Introducing the stress intensity coefficient 

K = K x - -  igr_r_ (1.119) 

we obtain the following general expression for a crack with its vertex 

at the point zl: 

K =.. K 1 - -  iK n = 2 }f2-~ lim (z - -  zz) ' / '  q)" (z). (1.120) 
Z~Z l 

Making use of the conformal mapping function z = w0?), we can 

rewrite (1.120) as 

K = 2  ~r~-~ lira ( c 0 ( I 1 ) - - r  (1.121) 

The mapping of a crack of length 2a onto a unit circle is given 

by 

z = Co (*1) = 1/~ a 01 -}- ~1-:). (1.122) 

In this case Eq. (1.121) assumes the simplified form 

K = 2 (~/a) % (I)'(1). (1.123) 

To illustrate the way in which the results of Muskhelishvili can be 
used, let us consider two problems solved by the latter. 

Let the force F(P,Q) be applied at an arbitrary angle to the side 
surface of a crack as shown in Fig. 21. The function is given by 

Fa f t '~10 

- 

where N corresponds to z = b, F = P - iQ; 3r = 3 - 4p in the case of 
planar straining and ~r = (8 - u)/(1 + u) in the case of a planar stress state. 

From (1.123) and (1.124) we obtain 

K I - -  2(zta)'/, I"a"~b--b) § ~ \x-]-~--~] 

P / ~ - - 1 \  
KII i 7) \q-C%---b] " (1.125) 

From (1.125) we find that in the case of a single straight-line crack 
in an infinite plate with the known stresses Oy(X, 0),  rxy(X, 0) acting 
at the side surface of the crack we have 

K I -  ( ha )%-a  \ ~ - - x /  dx, 

KII  - -  (ha) % "~xu (z, 0) \'~'-~-~--z / dx. (1.126) 

Let us consider the problem of a crack in the shape of a circular 
arc of radius R subtending the angle 2a .  The crack is symmetric with 
respect to the x-axis in an infinite plane under uniform tension by the 
stresses o at infintiy (Fig. 22). 

In this case 

q)' (z) --  2 (i .§ sin 20,5 a) X 

( 1  - -  2zB -1 cos ct § z~/B~) '1' ~- sins T " (1.127) 

The crack tip can be shifted to the origin by setting 

z/R = ie i~ (z/R - -  i - -  sin a cos a) (1.128) 

iwhereupon (1.120), (1.127), and (1.128) yield 

_ ~ ]/'~-R ( s i n a ( i  + c o s a )  )V, 
K I ( i  ~: s~5 ~) ~ 2 

- -  ! ]/'~-R ( sin a (l - -  cos a) ) lb.  (1.129) 
KII  (l -}- sin s 0,5 a) \ 2 

Further examples of this procedure can be given. 

II. OTHER MODELS OF CRACK PROPAGATION 

(The present section is selective in its coverage. The numerous 
papers concerning the various models of fracture theory would require 

a separate survey.) 
Advances in quasi-brittle fracture theory have been paralleled by 

the elaboration of other aspects of macroscopic crack development 

and fracture. 
Crack propagation with allowance for redistribution of stresses due 

to plastic straining was investigated by McClintock [1, 2J (1965, 1958), 
Hult [1-3]  [1957,1958), and by Hult and McClintock together [1] 

(1958). 
Let us review the basic results of these studies as they relate to 

fatigue fracture (see Hult [3] (1956)). The analysis was carried out for 
the case of an ideally plastic material  in longitudinal shear. As we 
see from Fig. 23, the elasticoplastic boundary R = f(a) in the polar 
coordinates R and a for Y~ < 7s (where 70o is the shear at infinity and 
7s is the yield strength in shear) is defined by the equations 

~ - - e a  

g,.  ~ 2 ~ F (s/0 - -  (0/2~x) (2,1) 
,wj = ~ r (2 - -  c0/2~), 

where c is the crack length (Fig. 23b). The function g(w) is shown in 
Fig. 23c. 

The shear strain is given by 7 = (R/r)Ts. In the loading cycle defined 
by the relation 7~0 = $~m 4- ),oo a the strain amplitude in the direction 
of the crack (a  = 0) is of the form 

,o = ~176 ' (=) 
"rs �9 

i . e . ,  the strain amplitude does not depend on the average load. 
The fatigue crack propagation criterion is formulated as follows: 

the crack moves forward by the distance p when the accumulated 
plastic shear strain reaches the value 7f at the distance O in front of 

the crack. 
The number of cycles required for the onset of crack propagation 

and the initial velocity of crack propagation are given by the relations 

i p YsYf ( A c  I %on 
no= 4 Co T ~ ' x J ~ o = 8 C  ,rs,rt . 

(2.3) 
~ a  
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The results were generalized for the case of large strains. It was 

noted that the twisting which accompanies crack propagation must 

increase constantly. If the fracture were described in terms of the 
Griffith-Irwin model, then the crack which develops under the given 
boundary conditions wouId appear to be unstable. However, con- 
sideration of the plastic zone in front of the crack (elasticoptastic 
analysis) indicates a stable crack propagation process. 

Similar conclusions were drawn by McC1intock [2] in the case of 
noncyclical loads. Considering an already loaded specimen, McClintock 
investigated the stress redistribution due to an incised groove. He 
noted that the resulting crack is stable, i .e.  that after the initial in- 
crease in crack length it is necessary to increase the stress in order 
to make it propagate further. The crack can become unstable with 
further development. McClintock later summarized the basic facts 
on fatigue crack propagation in his comprehensive paper [8]. Tire 
growth of fatigue cracks is occasioned by two phenomena: a) cyclical 
straining, and b) noncyclical progressive straining at the crack tip. 
The latter paper includes a survey of earlier studies, formulations of 
fracture criteria, and an analysis of experimental data. 

Leonov and Panasyuk [1](1959) proposed a new model of crack 
development in brittle bodies. The relevant problems were later 

elaborated by Panasyuk [1], Leonov [1], et al. 

The basic notions developed in these studies are as follows. 
The simplest model of a brittle body is defined as a medium with 

the following properties: a) the maximum tensile stresses do not exceed 
the  rupture strength %; b) the relationship between the stresses and 
strains is described by Hooke's law if the tensile stresses do not exceed 
o0; c) cracks form in the model when the maximum stress as deter- 
mined by the methods of linear elasticity theory exceeds ~ d) the 
crack surfaces are drawn together by the stress o0 if the gap between 
them does not exceed some value 6; otherwise, the crack banks do not 
interact. 

The quantities 5, o0, and ~ are related by the expression 

6(~0 = ~ (2.4) 

where ~ is either the fracture energy or the work expanded on enlarge- 
ment of the crack per unit area. 

The range in which the gap between the slit surfaces exceeds 6 is 
called the "ruptured-bond zone" or "crack". The remaining portions 
of the slit are called the "weakened-bond zones". Fracture (i.e. local 
fracture) is defined as the conversion of points of the weakened-bond 
zone into points of the ruptured-bond zone. 

Figure 24 shows a straight-line crack in a plane stretched by the 
tensile stresses o. The total length of the slit is 2L; that of the crack 
is 2l.: The weakened-bond zone at each crack edge is of the length 
d = L - l .  

gl p r 

Fig. 21 

Problems on the appearance and propagation of cracks can be posed 
within the framework of the Leonov-Panasyuk model. 

Let us consider the planar problem for a straight-line crack in a 
plane stretched by the srxess o (Fig. 24). 

The boundary conditions are of the form 

% r  l ~ l < z  (2.5) 
- -  Zo, l ~ [ x l . % g .  

The limiting tensile stress corresponding to the onset of crack 
development is given by the formula 

2 ~E~ 
= ~ Oo are cos exp (-- eft), c = 8 (t -- v 2) r (2.6) 

The length of the weakened-bond zone prior to fracture is 

d ~ L -- l = I (exp (e/l) -- t). (2.7) 

Griffith's formual (1.31) follows from (2.6) as l - - '~  
The Leonov-Panasyuk model is original and is not reducible to the 

Griffith-Irwin model. The fracture condition is related to the length 
d = L - l, which is generally large. Essentially, those concepts which 
have been associated with the "Dugdale hypothesis" (see below) in the 
West were originated by Leonov and Panasyuk. 

t " 

Fig. 22 

On the basis of experiments on stretched plates weakened by inner 
and outer notches (Fig. 25) Dugdale [1] (1960) SUggested that the 
plastic zone is concentrated in a narrow strip over the length of the 
notch. He obtained the relation 

-$- =2 sin a , a = I q- s (2.8) 

where s is the length of the yield zone, l is either the half-length of 
the inner slit or the length of the outer notch, T is the tensile stress, 
and Y is the yield strength in tension. 

Field [1] (1963) used Dugdale's hypothesis to determine the extent 
of the plastic zone in a plate with a transverse crack in longitudinal 
shear. 

Goodier and Field [1] (t968)iused the same hypothesis m consider 
work dissipation d~ing the plastic straining which accompanies crack 
development. They assume that a plane stretched by the forces Oy is 
weakened by a crack of length 2l. The plastic zone near each crack 
edge is of the length s = a - l (Fig. 25a). Denoting the work of plastic 
straining by Wp, the authors obtain 

4 ~ dW~dl J - - ( z@i ) ( l+v )E(~ , ) ' l / ( t )  

f(t) := T tg --~- - -  log see " T '  t = ~vl~s (2.9) 

where n is a constant in the Muskhelishvili formulas [1] and o s is the 
yield strength in tension. 

They then determine the strains at the crack tip, discuss dynamic 
crack propagation, and compare their findings with experimental 
data. 

Let us also note paper [1]by Lukashev (1988) who developed notions 
close to those of Leonov-Panasyuk and Dugdale. 

Using the Dugdale hypothesis as their starting point, Keer and Mura 
[1] considered a cracked plane in shear and a circular crack in space 
With uniform pressure applied to its side surfaces. They alto made 
use of the Tresea plasticity condition. 

Problems of plastic zone determination during crack propagation 
were dealt with on the basis of notions close to those of Dugdale by 
Rosenfield, Dai, and Hahn [1]. Such problems are also discussed by 
Vice [2], 

Kostrov and Nikitin [1] (1987) recently obtained the solution for a 
longitudinal shear crack on the basis of the Dugdale hypothesis, re- 
quiring fulfillment of the yon Mises plasticity condition at the boundary 
of the plastic zone. 

The two-dimensional etasticoplastic stress distribution near the tip 
of a planar crack is discussed i n paper [1] by Swedlow, Williams, 
and Yang. 

In his paper [7] (1962) Williams surveys theoretical and experimental 
studies on the fracture of elasticoptastle media. He notes thar one of 
the earliest studies on the fracture of elasticoplastic materials was that 
of Rivlin and Thomas (J. Polymer Sci., V01, 10, 1952) who used the 
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Grifflth hypotheses to study the rupture of rubber sheets. These authors 
obtained a rupture criterion similar to that of Griffith. Greensmith and 
Thomas (J. Polymer Sci., Vol. 18, 1965) later found that the critical 
rate of elastic energy liberation corresponding to the onset of fracture 
depends on the velocity of rupture and temperature. 

0 x / 2  ~r ~, 

Fig. 23 

As in his previous study [6], Williams used the Voigt model of a 
viscoelastic body as his starting point, formulating the viscoelastic 
analysis problem as one of determining the time until onset of crack 

propagation. 
Kachanov [1, 2] (1961, 1963),considered crack propagation in 

Maxwell-type viscoelastic media, in hereditary media, etc., assuming 
a constant stress intensity coefficient. 

Berg [1] (1962) considered the development of planar elliptical 
cracks in a viscous medium. Using the apparatus developed by Muskh- 
lishvtli, he investigated cases of crack development under various 
boundary conditions and compared his findings with experimental 
data. 

Barenblatt, Entov, and Salganik [1, 2] (1966) considered an elastic 
medium under the assumption that the stress intensity coefficient 
depends on the velocity of crack progression. 

McClintock and Irwin [1] (1966) discussed the effects of plasticity 
on fracture and the possible refinements of quasi-brittle fracture 

;theory in connection with allowance for the plastic properties of the 
material. Their study primarily concerns pure shear. They show that 
energy dissipation rate during plastic straining is equal to double the 
value of the g~ obtained from linear elasticity analysis. In the case of 
PlaSticity none of the criteria of the ~-const type is adequate for de- 
scribing fracture. The fracture criterion can be based, however, on 
the local stresses and strains in some domain in front of the crack. A 
fracture criterion based on the displacements near the crack tip during 
its opening is generally inconsistent with one based on the local stress 
and strain characteristics in front of the crack. The authors then 
proceed to a detailed discussion of stable crack growth, devoting much 
attention to the analysis of experimental data. 

We must also note the cycle of original studies begun by Leonov 
and coworkers in 1961. These studies concern the strain state of elastic 
materials weakened by dislocations and ptastic slip bands. 

Recent contributions include a study by Etdogan [5] (1966) on the 
determination of the plastic zone in a crack-weakened semi-infinite 
medium consisting of two heterogeneous parts in shear, as well as 
papers by Yokobori and Ichikawa [1] (1965) and Yakobori and Tnaka [1] 
(1966). In his paper [8] (1967) Cherepanov used general energy con- 
siderations to discuss problems of crack propagation in various media 
and to investigate crack development criteria in plastic and viscoelas- 
tic bodies. 

III. SOLUTIONS OF PROBLEMS OF THE MATHMATICAL THEORY OF 
C R A C K S  

The present section is a brief survey of solutions of the mathematical 
theory of cracks based on the linear elastic body model. (The reader 
will find additional information on the papers cited in RZh Mekhanika 

and also in Donaldson and Anderson [1], Paris and Sih [1], Barenblatt 
[9,11], and the recent survey on stress concentration theory by Neuber 
and Hahn [1]. ) 

Soviet researchers have made some outstanding contributions to the 
theory of elasticity. There is no need here to give a detailed account 
of studies on various methods of solving boundary value problems and 
stress concentration theory which form the basis of many studies on 
quasi-brittle fracture theory. Suffice it to say that the contributions 
of Kolosov, Muskhellshvili, and several other investigators have made 
possible the solution of basic problems of the mathematical theory 
of cracks. 

In addition to his general methods, which have played a major role 
in the development of the planar problem of elasticity theory, Mus- 
khelishvili also solved several problems on cracked elastic bodies. 

The well-known studies of L. A. Galin, S. G. Lekhnitskii, A. I. 
Lur'e, G. N. Savin, Ya. S. Uflyand, D. I. Sherman, I. Ya. Shtaerman 
et al. have a direct bearing on the mathematical theory of quasi-brit- 
tle fracture. The results of Vorovich and his pupils on the contct 
problem in bodies of finite size have been applied to crack theory. 

Results obtained in related fields of mechanics by M. V. Keldysh, 
N. E. Kochin, M. A. Lavrent'ev, L. I. Sedov et al. have been used 
and will be used in the future to solve problems of quasi-brittle 
fracture theory. 

w An isolzopic elastic body. The planar problem. We have al- 

ready mentioned the studies of Kolosov, Inglis, Mnskhelishvili, Wolf, 
Nenber [1], Westergaard [1-, 2], Sneddon ['1-3], Irwin [3-5, 7, 9], et 
al. These authors investigated a broad range of problems relating to 
an infinite domain weakened by one or more cracks. 

Willmore [1] investigated a plane weakened by a straight-line crack 
with arbitrary loads applied to its banks. He also considered the case 

of two collinear cracks of the same length in an infinite plane under 
homogeneous tension. This case was later considered by Winne and 

Wundt [i]. 
Bowie [3_] investigated the stress state of a plane weakened by a 

circular hole with radial cracks extending from the boundary of the 
latter. He considered two types of loads, namely omnilateral and uni- 
axial tension. He also studied the effect of a hole on the stress state 

near a crack. 
Sadowsky ['1] discussed once again the analogy between die im- 

pression and crack problems and solved the problem of two collinear 
cracks in a plane under omnilateral tension at infinity. 

The mixed problem of a plane with a slit was considered by Mos- 
sakovskii and Zagubizhenko [1, 2]. The opening of a crack by a wedge 
was investigated by Barenblatr [5], Barenblatt and Cherepanov [2], 
Markuzon ['1], and Cherepanov [3]. 

Koiter [1] studied the problem of a plane weakened by a row of col- 
linear cracks in shear (which cannot be solved by the method of 
Westergaard, since ~'xy ~ 0 for y = 0). Koiter [2] likewise obtained an 
approximate solution of the problem of a pIane weakened by an 
infinite row of parallel equidistant cracks of equal length, assuming 
the presence of shearing forces at infinity. A plane weakened by an 
infinite row of cracks was aslo studied by Lowengrub [1]. 

Bueckner [2] solved several crack problems0 including that of a 
single crack emerging onto the boundary of a circular hole with 
arbitrarily varying normal forces applied to the side surface of the 

crack. 
A major cycle of studies on the planar problem with cracks was 

carried out by the Ukrainian researchers Panasyuk, Babich, Berezhnitskii, 
Buina, Kaminskii, Kovchik, Libatskii, Lozov, et al., who considered 
the solutions of various problems for a plane'weakened by several 
cracks and hole-crack combinations, as well as the bending of cracked 

strips, etc. 
The studies of Barenblatt and Cherepanov [1],  Sorokin [1], Ustinov 

[1] et al. must also be mentioned. 
The cases of one and two collinear cracks in a plane with various 

combinations of boundary conditions were studied by Erdogan [1]. 
Noteworthy too,is the paper by Sih, Paris, and Erdogan [1]. 

Lowengrub [1] investigated the stress state of a plane with two outer 
cracks for various combinations of boundary conditions. 
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Single cracks emerging onto the free boundary of a semi-infinite 
body were studied by Wigglesworth [3] and Irwin [6]; Wigglesworth [4] 
also studiedthe problem of a crack emerging onto the boundary of a 
circular cavity. Bueekner [2] considered the bending of an elastic strip 
with a crack emerging onto the strip boundary (Bueckner's study is related 
to that of Winne and Wundt [1]). 

Sneddon's monograph [4] contains a discussion of the two solutions 
obtained by Tait for strips of finite width weakened by inner and outer 
symmetric cracks. Symmetric forces were assumed to act at the side 
surfaces of the cracks. 

Determinations of the stress states of strips of finite width was 
considered by Aleksandrov [1] and by Aleksandrov and Smetanin [1]. 

Practically important solutions for stretched strips of finite width 
containing central cracks were obtained by Isida [1], who investigated 
stress concentrations at the vertices of cracks with rounded tips. The 
results for a crack are obtained by the limiting process (1.114). An 
approximate solution (1.74) was likewise obtained by Irwin [3]. The 
Isida solution is suitable for the treatment of experimental data on 
the constants $c" 

Isid a [3] also considered the problem of a finite strip with an eccentric 
crack. 

Bowie studied the stretching of a strip with two symmetric outer 
cracks. He also computed stress concentration coefficients and made 
comparisons with the results of Irwin [8] and Bueckner [2] in several 
different cases. 

Bowie made extensive use of the results of Kartsivadze [1]. 
Bowie and Neal [1] considered the problem of stretching of a rec- 

tangular plate with a single outer crack. 
Bloom [1] used the methods developed by Bowie to solve the prob- 

lem of bending of a rectangular strip weakened by a single crack. 
Knanss [1] considered the determination of the stress state of a strip 
containing an infinite crack along its center line. He assumed that 
the side edges of the strip experienced a rigid displacement normal 
to the crack. 

Lowengrub [3] considered the problem of a strip of finite width 
weakened by a center-line crack parallel to the sides of the strip under 
various boundary conditions imposed on the stresses and displacements. 

Solutions of problems concerning cracked structures strengthened 
by reinforcing ribs are of practical interest. One of the first studies 
in this area was that of Romualdi and Sanders [1]. Isida [2] generalized 
the results of the latter authors to consider problems of centrally cracked 
strips with reinforced edges, as well as of infinite sheets with a periodic 
row of cracks reinforced by longitudinal stiffening elements. 

Greif and Sanders [1] investigated the problem of a plane weakened 
by an asymmetric crack and reinforced by an infinite stringer. Bloom 
and Sanders [1] considered a similar problem for a stringer fastened to 
an infinite sheet by means of rigid equidistant rivets of equal diameter. 

There have been several other foreign studies in the field. (I was 
unable to gain access to the papers of Sanders (Report NACA, 1989); 
Romualdi, Fraser, Irwin (Report NACA, 1987); Leybold (Technical Note 
NACA, 1963) et al .)  

~2. Axisymmetric and three-dimensional problems. The well-known 
solutions of Neuber [1] have already been mentioned. Sack [1] used 
Neuber's results to compute the Grfffith critical stress for a space weakened 
by a panny-shaped crack under uniform tensile forces at infinity. 

Sneddon [1, 2] obtained the general solution of the problem of a 
circular crack with normal forces acting at its side surfaces. Payne [1] 
and Green and Zerna [1] also investigated axisymmetric problems for a 
space with a eireuIar crack. 

Axisymmetric problems for a space weakened by circular slits were 
considered by Uflyand [1, 2] and by Lebedev and Uflyand [1]. 

The axisymmetric problem for a half-space with a circular slit was 
studied by Kuz'min and Uflyand [1]. 

A circular crack in an unbounded medium in a homogeneous shear 
field was investigated by Westmann [1]. 

Problems of determining the stress state of a long circular cylinder 
containing a symmetrically situated circular crack perendicular to 
its axis were dealt with by Collins [1], Sneddon and Tait [1], and 
Sneddon and Wells [1] under various combinations of boundary conditions. 

grdogan [4] considered the case of a plane weakened by circular 
annular cracks. He obtained his results for two interconnected elastic 
half-spaces made of materials with isotropic but differing properties. 
He assumed that given fomes acted at the side surfaces of the cracks and 
considered inner and outer axisymmettic slits. 

1 

Fig. 24 

Lowengrub and Sneddon [1] considered the case of an outer axisym- 
metric slit under various axisymmetric and nonaxisymmetric boundary 
conditions. 

The three-dimensionaI problem of stress concentration in an infinite 
body weakened by a cavity in the shape of a rxiaxiat ellipsoid was in- 

vestigated by Sadowsky and Sternberg [1] and Green and Sneddon [1]. 
These authors considered loads applied symmetrically with respect to 

the principal planes of the ellipsoidal plane or with respect to the plane 
of a two-dimensional crack. 

The three-dimensional problem with arbitrary loading of a circu- 
lar slit was investigated by Mossakovskii [I]. Several three-dimensional 
probIems were solved by Panasyuk [4-6, 9,12], who considered the 

cases of a space with an elliptical crack, and of a nearly circular crack 
acted on by a load normal m the crack banks. 

kwin's study [9] has been mentioned. Kassir and Sih [1] considered 
the solution for an unbounded space with a planar elliptical crack 
acted on by shearing loads. By superposition of the solution for the 
case of tension perpendicular to the crack plane they solved the prob- 
lem of an unbounded elastic body with a planar elliptical crack under 
a load of general form. 

w Torsion, longitudinal shear, bending. One of the first authors 
to solve a problem on the torsion of a rod with limiting slits was Filon 
g]  (1900). 

Problems concerning the torsion of cracked bodies were studied by 
Dinnik [1], who in 1918 solved a problem for a circular rod with a 
radial crack. Other papers on the subject include those of Arutyunyan 
and Abramyan ['1], Balobyan [1], Shiryaev [1,2], and Wigglesworth 
[1, 21. 

Irwin's results [5, 7] for the case of longitudinal shear have already 
been mentioned. 

The case of longitudinal ~hear was also investigated by Barenblatt 
and Cherepanov [3] and by Salganik [1]. 

Sih [4] studied problems concerning the determination of stress con- 
centration coefficients in the bending and torsion of cracked beams. 
He investigated the same problems in the case of longitudinal shear 
in his papers [6, 7]. 

Anisotropie materials. A crack in an orthotropic material was con- 
sidered by Willmore [1]. Chapkis and Williams [1] considered the 
behavior of the solution near a crack tip in an orthotropic plate. Stroh 
[1] considered a straight-line crack in an anisotropic plane. He ob- 
tained the basic solution for the case of forces distributed along the 
side surfaces of the crack, investigated the properties of the solution 
at the crack tip, and computed the change in elastic energy associated 
with a change in ezack length. Anisotropic materials containing cracks 
were considered by Barenbtatt and Cherepanov [4]. The study by Aug 
and Williams [1] is also worthy of mention. Problems involved in 
determining stress concentration coefficients for anisotropic media were 
discussed by Paris and Sih [1]. The same problems are considered in 
more detail in paper [1] by Sih, Paris, and Irwin. 
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Nonhomogeneous materials. The problem of two half-planes or half- 

spaces of differing materials with cracks at the contact surface has been 
investigated by several authors. Nonhomogeneous cracked materials 
were studied by Cherepanov [1], Mossakovskii and Rybka ['1], Salganik 
[2], and Go1'dshtein and Salganik ['1]. The most general results were 
obtained by Cherepanov [1, 3]. The behavior of the solution at the 
crack vertex in this case was investigated by Williams [4]. 

Fig. 25 

Several boundary value problems in the planar case were investi- 
gated by Erdogan [2, 3]. The studies of Williams and Erdogan showed 
that the singularity of the solution near the crack tip is of the form 

k 
~ii = ~ / ~ j ( ( ~ ' i ) ,  O, logr) (3.1) 

where X i is a function of the material properties. 
Erdogan's study [4] for the axisymmetric case has already been 

mentioned. 
Sack and Williams [1] considered the properties of the solution 

near a crack perpendicular to the boundary between two media. It 
turns out that in this case oij ~ r "n (the singularity exponent n > 1/2) 
near the crack if the crack arose in the material with the lower elastic 
modulus, and vice versa. 

England [1] studied the displacement field in the problem of a 
single straight-line crack situated along the line of contact between 
two half-planes of different materials. Assuming that normal forces 
act at the side surfaces of the crack, he showed that the lower and 
upper edges of the crack bend and overlap near its tip, which is 
physically ianpossible. 

Several solutions of the planar problem of cracks at the boundary 
between two heterogeneous media were obtained by Rice and! Sih [1]. 
The studies of England [3J and Sih [9] are also noteworthy. 

Bending of plates and shells. Williams [5] investigated the properties 
of solutions near crack tips in bent plates. Knowles and Wang [1] used 
Reisner's theory to determine the stress state of a thick crack-weakened 
plate in bending. The singularity of the stresses near the crack tip is 
of the same order as in the classical theory of plates. 

The aforementioned study by Sih, Paris, and Erdogan [1] contains 

a discussion of the determination of stress intensity coefficients in 
bending and several examples. The bending stresses in a cracked plate 
resting on an elastic base were considered by Ang, Folias, and Wil- 
liams ['I], who pointed out the analogy between their problem and 
that of the straining of a spherical shell with a small initial curvature. 

Sih and Rice [1] considered the bending of a plate consisting of two 
heterogeneous parts joined along a straight line with cracks along it. 

The paper by Redwood and Shepherd [1] has already been mentioned. 
Survey [1] by Paris and Sih contains several additional references to 

studies by foreign authors which were not available to me. 
Thermal stresses. Sth's paper [2] was mentioned above. The thermal 

problem for a space with a circular slit was considered by Sneddon [4]. 
Florence and Godie [1] obtained the solution for a plane weakened 
by an oval hole in a steady temperature field. Other examples are 
mentioned by Paris and Sih [1]. Thermal problems were also studied 
by Borodachev [1], Kit and Podstrigach [1], et al. 

Moment stresses. Paris and Sih [1] mention a doctoral thesis by 
Setzer (1963) in which crack problems are investigated by means of 
the moment theory of elasticity. 
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